

BASIC PYTHON PROGRAMMING**Course Code : 313011****Programme Name/s**

: Automation and Robotics/ Digital Electronics/ Electrical Engineering/ Electronics & Tele-communication Engg./ Electrical and Electronics Engineering/ Electrical Power System/ Electronics & Communication Engg./ Electronics Engineering/ Instrumentation & Control/ Industrial Electronics/ Instrumentation/ Medical Laboratory Technology/ Medical Electronics

Programme Code

: AO/ DE/ EE/ EJ/ EK/ EP/ ET/ EX/ IC/ IE/ IS/ ML/ MU

Semester

: Third / Fourth / Sixth

Course Title

: BASIC PYTHON PROGRAMMING

Course Code

: 313011

I. RATIONALE

Electronics based industries needs to deal with creating circuits design, simulation, signal processing and control systems which can be developed using Python. This course deals with the basics of python to enhance the programming skills of diploma students. The course will enable students to write python programs as well as use different python libraries to solve given problems.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to attain the following industry/employer expected outcome through various teaching learning experiences:

Develop programs using python to solve wide-reaching electronics engineering related problems.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 - Develop script to demonstrate use of basic building blocks of python.
- CO2 - Implement conditional and looping statements for given problem statement.
- CO3 - Perform operations on sequence structures in python.
- CO4 - Implement basics of object oriented programming concepts.
- CO5 - Create modules and packages for given purpose.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

Course Code	Course Title	Abbr	Course Category/s	Learning Scheme				Credits	Paper Duration	Assessment Scheme								Based on SL	Total Marks			
				Actual Contact Hrs./Week			SLH	NLH	Theory			Based on LL & TL										
				CL	TL	LL			FA-TH		SA-TH		Total		FA-PR		SA-PR		SLA			
									Max	Max	Max	Min	Max	Min	Max	Min	Max	Min				
313011	BASIC PYTHON PROGRAMMING	BPP	AEC	2	-	2	-	4	2	-	-	-	-	-	25	10	25@	10	-	-	50	

Total IKS Hrs for Sem. : 0 Hrs

Abbreviations: CL- ClassRoom Learning , TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\\$ Internal Online Examination

Note :

1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
5. 1 credit is equivalent to 30 Notional hrs.
6. * Self learning hours shall not be reflected in the Time Table.
7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Describe the given Keywords and Constants in Python. TLO 1.2 Use indentation, comments in the given program. TLO 1.3 Use different types of operators for writing expressions. TLO 1.4 Write python program using input output statements.	Unit - I Basic Python's Constructs 1.1 Introduction to Python- Python as scripting Language, Programming language Vs Scripting Language (C vs Python), Python's Technical Strength, Application in different domains 1.2 Python's building blocks- Identifiers, Keywords, Variables, Constants, Indentation, Comments in python 1.3 Python's Data Types – Numbers, Strings, List, Tuples, Dictionaries, Sets 1.4 Input and Output statements in python 1.5 Operators in Python- Operators as Arithmetic, Assignment, Unary Minus, Relational, Logical, Boolean, Bitwise, Membership, Identity, Operator precedence and Associativity	Presentations, Lecture Using Chalk-Board, Hands-on
2	TLO 2.1 Develop programs using Conditional Statements. TLO 2.2 Develop programs using Loop statements. TLO 2.3 Use statements to control the loops.	Unit - II Control Statements in Python 2.1 Types of Control Statements – Decision making statements, Looping statements 2.2 Decision Making Statements: - if, if...else, else-if ladder ,nested if and switch statement 2.3 Looping statement: - while loop, for loop, nested loop 2.4 Manipulating Loops- use of break, continue and pass statements	Lecture Using Chalk-Board, Demonstration, Hands-on, Flipped Classroom

BASIC PYTHON PROGRAMMING**Course Code : 313011**

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
3	TLO 3.1 Develop program to manipulate List for given purpose. TLO 3.2 Develop program to manipulate Tuples for given purpose. TLO 3.3 Develop program to manipulate Sets for given purpose. TLO 3.4 Develop program to manipulate Dictionaries for given purpose.	Unit - III Data Structures in Python 3.1 List- Defining List, Creating list, Accessing values from list, Updating the elements of a list, Concatenation of two lists, Repeating of Lists, Membership in list, Aliasing and cloning Lists, Methods to process Lists, Nested Lists 3.2 Tuples- Defining Tuple, Creating Tuples, Accessing the Tuple elements, Inserting elements in a Tuple, modifying elements of a Tuple, Deleting elements from a Tuple, Basic operations in Tuples, Functions to process Tuples, Nested Tuples 3.3 Sets- Defining Set, Creating a Set, Accessing elements from set, Add and update Set, Remove an elements from a Set, Built in functions with Set, Set methods to perform mathematical operations, other relevant set methods 3.4 Dictionaries- Defining Dictionary, Creating Dictionary, Accessing elements from Dictionary, Add and update Dictionary, Delete an element from a Dictionary, Built in functions of Dictionary, Methods to perform Dictionary	Demonstration, Lecture Using Chalk-Board, Hands-on
4	TLO 4.1 Use python built-in functions to perform tasks. TLO 4.2 Develop relevant user defined function for the given purpose. TLO 4.3 Define classes to create and access objects with its methods and attributes.	Unit - IV Functions with Basic OOP concepts 4.1 Python Functions- Use of python built in functions (e.g. type/data conversion functions, math and string functions), User defined function- Function definition, function calling, function arguments and parameter passing, Return statement, scope of variables (Global and Local Variables) 4.2 Basic OOP concepts- Introduction to object-oriented programming, Creating classes and objects, Constructors and Destructors in python, Data abstraction and Encapsulation	Demonstration, Lecture Using Chalk-Board, Hands-on
5	TLO 5.1 Develop a python module in python for given purpose. TLO 5.2 Develop a python package for given purpose. TLO 5.3 Use NumPy for performing mathematical operations on arrays. TLO 5.4 Use matplotlib to create data visualization in python.	Unit - V Modules and Packages in Python 5.1 Modules- Writing modules, importing module, python built in modules (Numeric and mathematical module, Functional Programming Module) 5.2 Python packages- Introduction, Writing python packages, using standard packages (NumPy, matplotlib) and user defined package statements	Demonstration, Lecture Using Chalk-Board, Hands-on

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
--	-------	--	----------------	--------------

BASIC PYTHON PROGRAMMING**Course Code : 313011**

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Install Python Integrated Development Environment.	1	a) Install and configure Python IDE. b) Write Python program to display message on screen.	2	CO1
LLO 2.1 Use operators in Python.	2	*a) Write simple Python program to calculate equivalent registers connected in series and parallel. Accept values of R1, R2 and R3 from the user. *b) Write simple Python program to calculate value of voltage by applying Ohm's law. Accept value of Current(I) and Resistance(R) from the user.	2	CO1
LLO 3.1 Implement two-way branching statement.	3	Write program to check whether entered frequency is radio frequency or audio frequency.	2	CO2
LLO 4.1 Implement multi-way branching statement.	4	*a) Write program to display various radio frequency bands using if..elseif ladder. *b) Write program to display resistor color code using switch statement.	2	CO2
LLO 5.1 Implement control loops for solving iterative problems.	5	*a. Write a simple Python program to demonstrate use of control loops: i) while ii) do while *b. Create a simple program, to demonstrate use of: for loop in Python (e.g.: various pattern building, printing multiplication table, checking palindrome number etc.)	2	CO2
LLO 6.1 Perform basic operations on the Lists.	6	*Write Python program to perform following operations on List: a) Create b) Access c) Update d) Delete elements from list.	2	CO3
LLO 7.1 Execute various tuple operations.	7	Develop Python program to perform following operations on Tuples: a) Create b) Access c) Update d) Delete Tuple elements	2	CO3
LLO 8.1 Implement various set operations.	8	Write Python program to perform following operations on Set: a) Create b) Access c) Update d) Delete Access Set elements	2	CO3

BASIC PYTHON PROGRAMMING**Course Code : 313011**

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 9.1 Execute various operations on Dictionaries.	9	*Create a program to perform following operations on Dictionaries in Python: a) Create b) Access c) Update d) Delete e) Looping through Dictionary	2	CO3
LLO 10.1 Use built-in mathematical functions and string functions in python.	10	a) *Create python program to demonstrate use of math built-in function. b) *Create python program to demonstrate use of string built-in function.	2	CO4
LLO 11.1 Create user defined functions in Python.	11	Write python programs to define function with arguments. a) Calculate factorial of a number b) Swapping of two variables	2	CO4
LLO 12.1 Implement function with default arguments.	12	Write programs to define function with default arguments.	2	CO4
LLO 13.1 Use built-in python mathematical modules.	13	*Create a program to demonstrate use of: Built-in module (e.g. numeric, mathematical functional and programming module) in Python.	2	CO5
LLO 14.1 Write user-defined module in python.	14	Write program to create a user-defined module (e.g.: building calculator) in python.	2	CO5
LLO 15.1 Use python built-in packages.	15	*Develop Python program to demonstrate use of NumPy package for creating, accessing and performing different array operations.	2	CO5
LLO 16.1 Implement user-defined packages in python.	16	Write program to demonstrate the use of user-defined packages in Python.	2	CO5

Note : Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)**Micro project**

- Not Applicable

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	a) Computer System with all necessary peripherals and internet connectivity. b)Any relevant python IDE like IDLE/PyCharm/VSCode/Jupiter Notebook/Online Python Compiler.	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	I	Basic Python's Constructs	CO1	4	0	0	0	0
2	II	Control Statements in Python	CO2	4	0	0	0	0
3	III	Data Structures in Python	CO3	10	0	0	0	0
4	IV	Functions with Basic OOP concepts	CO4	6	0	0	0	0
5	V	Modules and Packages in Python	CO5	6	0	0	0	0
Grand Total				30	0	0	0	0

X. ASSESSMENT METHODOLOGIES/TOOLS**Formative assessment (Assessment for Learning)**

- Each practical will be assessed considering – 60% weightage to process and – 40% weightage to product.

Summative Assessment (Assessment of Learning)

- End semester summative assessment of 25 marks for laboratory learning.

XI. SUGGESTED COS - POS MATRIX FORM

BASIC PYTHON PROGRAMMING**Course Code : 313011**

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes* (PSOs)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO1	2						1			
CO2	2			1			2			
CO3	1	1	1	2			2			
CO4	1	2	2	2			2			
CO5	1	1	1	2			2			

Legends :- High:03, Medium:02, Low:01, No Mapping: -

*PSOs are to be formulated at institute level

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	Giancarlo Zaccone	Natural Computing with Python	BPB, ISBN:9789388511612
2	Martin C. Brown	Python: The Complete Reference	Tata McGraw Hill ISBN: 9789387572942
3	Yashwant Kanetkar	Let Us Python	BPB, ISBN: 978-9391392253
4	Kumar Naveen, Taneja Sheetal.	Python Programming: A modular approach	Pearson, ISBN: 978-9352861293
5	Mark Lutz and David Ascher	Learning Python	O'Reilly, ISBN: 978-1449355739
6	Paul Barry	Head First Python	O'Reilly, ISBN: 978-1449382674
7	John Guttag	Introduction to Computation and Programming Using Python	MIT Press, ISBN: 978-0262529624
8	David Beazley	Python Essential Reference	Addison-Wesley Professional, ISBN: 978-0672329784
9	Dr. R. Nageswara Rao	Core Python Programming	DREAMTECH PRESS, ISBN: 978-9386052308

XIII . LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://www.programiz.com/python-programming	Python Programming
2	https://python-iitk.vlabs.ac.in/Introduction.html	Virtual Lab for Python Programming- Basic Constructs in Python
3	https://www.geeksforgeeks.org/python-programming-language/	Python Programming
4	https://intellipaat.com/academy/course/introduction-to-python-programming-free-course/	Online Course-Python Programming
5	https://www.w3schools.com/python/	Python Programming
6	https://www.tutorialspoint.com/python/index.htm	Python Programming

MSBTE Approval Dt. 02/07/2024**Semester - 3 / 4 / 6, K Scheme**

BASIC PYTHON PROGRAMMING**Course Code : 313011**

Sr.No	Link / Portal	Description
7	https://www.python.org/	Python Programming
8	https://spoken-tutorial.org/tutorial-search/?search_foss=Python+3.4.3&search_language=English	Spoken Tutorial on Python Programming

Note :

- Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 02/07/2024**Semester - 3 / 4 / 6, K Scheme**

	: Architecture Assistantship/ Automobile Engineering./ Artificial Intelligence/ Agricultural Engineering/ Artificial Intelligence and Machine Learning/ Automation and Robotics/ Architecture/ Cloud Computing and Big Data/ Civil Engineering/ Chemical Engineering/ Computer Technology/ Computer Engineering/ Civil & Rural Engineering/ Construction Technology/ Computer Science & Engineering/ Fashion & Clothing Technology/ Digital Electronics/ Data Sciences/ Electrical Engineering/ Electronics & Tele-communication Engg./ Electrical and Electronics Engineering/ Electrical Power System/ Electronics & Communication Engg./ Electronics Engineering/ Food Technology/ Computer Hardware & Maintenance/ Instrumentation & Control/ Industrial Electronics/ Information Technology/ Computer Science & Information Technology/ Instrumentation/ Interior Design & Decoration/ Interior Design/ Civil & Environmental Engineering/ Mechanical Engineering/ Mechatronics/ Medical Laboratory Technology/ Medical Electronics/ Production Engineering/ Printing Technology/ Polymer Technology/ Surface Coating Technology/ Computer Science/ Textile Technology/ Electronics & Computer Engg.
Programme Name/s	: AA/ AE/ AI/ AL/ AN/ AO/ AT/ BD/ CE/ CH/ CM/ CO/ CR/ CS/ CW/ DC/ DE/ DS/ EE/ EJ/ EK/ EP/ ET/ EX/ FC/ HA/ IC/ IE/ IF/ IH/ IS/ IX/ IZ/ LE/ ME/ MK/ ML/ MU/ PG/ PN/ PO/ SC/ SE/ TC/ TE
Programme Code	: Fifth / Sixth
Semester	: MANAGEMENT
Course Title	: 315301
Course Code	

I. RATIONALE

Effective management is the cornerstone of success for both organizations and individuals. It empowers diploma engineers/ professionals to accomplish their tasks with finesse and efficiency through strategic planning and thoughtful execution, projects can optimize finances, enhance safety measures, facilitate sound decision-making, foster team collaboration and cultivate a harmonious work environment. The diploma engineers require leadership and management skills with technical knowledge of the core field to carry out various tasks smoothly. This course aims to instill fundamental management techniques, empowering diploma engineers/ professionals to enhance their effectiveness in the workplace.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to help the students to attain the following industry identified outcome through various teaching learning experiences: Apply the relevant managerial skills for achieving optimal results at workplace.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 - Use relevant management skills to handle work situation
- CO2 - Apply appropriate techniques of product, operations and project management
- CO3 - Use comprehensive tools of recent management practices

MANAGEMENT**Course Code : 315301**

- CO4 - Plan suitable marketing strategy for a product / service
- CO5 - Utilize supply chain and human resource management techniques for effective management

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

Course Code	Course Title	Abbr	Course Category/s	Learning Scheme			Credits	Paper Duration	Assessment Scheme								Total Marks			
				Actual Contact Hrs./Week					Theory			Based on LL & TL		Based on SL						
				CL	TL	LL			FA-TH	SA-TH	Total	FA-PR	SA-PR	SLA						
				Max	Max	Max			Max	Max	Min	Max	Min	Max	Min	Max	Min			
315301	MANAGEMENT	MAN	AEC	3	-	-	1	4	2	1.5	30	70*#	100	40	-	-	25	10	125	

Total IKS Hrs for Sem. : 1 Hrs

Abbreviations: CL- ClassRoom Learning , TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\\$ Internal Online Examination

Note :

1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
5. 1 credit is equivalent to 30 Notional hrs.
6. * Self learning hours shall not be reflected in the Time Table.
7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.

MANAGEMENT**Course Code : 315301**

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	<p>TLO 1.1 Justify the importance of management thoughts in Indian knowledge system.</p> <p>TLO 1.2 Describe the importance of management in day to day life.</p> <p>TLO 1.3 Explain Henry Fayol's principles of management.</p> <p>TLO 1.4 Describe the role of each level of management in its management hierarchy.</p> <p>TLO 1.5 Practice the self management skills for a given situation</p> <p>TLO 1.6 Apply the required managerial skills for a given situation</p>	<p>Unit - I Introduction to Management</p> <p>1.1 Evolution of management thoughts from ancient/medieval to modern times in India (IKS)</p> <p>1.2 Management: meaning, importance, characteristics, functions & challenges.</p> <p>1.3 Introduction to scientific management- Taylor's & Fayol's principles of management</p> <p>1.4 Levels & functions of management at supervisory level.</p> <p>1.5 Self management skills: Self awareness, self discipline, self motivation, goal setting, time management, decision making, stress management, work life balance and multitasking</p> <p>1.6 Overview of Managerial Skills: negotiation skills, team management, conflict resolution, feedback, leadership</p>	Presentations Case Study Interactive session Quiz competition Mixed Picture Puzzle
2	<p>TLO 2.1 Identify the appropriate creativity technique for new product development</p> <p>TLO 2.2 Describe the new product development process for a product / service</p> <p>TLO 2.3 Comprehend the importance of various strategic steps Product Management</p> <p>TLO 2.4 Elaborate Agile product management</p> <p>TLO 2.5 Explain the significance of the Project Management</p> <p>TLO 2.6 Describe the various tools of project management</p>	<p>Unit - II Product, Operations and Project Management</p> <p>2.1 Creativity and innovation management: creativity techniques - brainstorming, checklist, reverse brainstorming, morphological analysis, six thinking hats.</p> <p>2.2 New product development, change management</p> <p>2.3 Product Management -meaning, strategic steps for sustainable design of a product</p> <p>2.4 Agile product management- concept, benefits, principles and manifesto</p> <p>2.5 Project Management: importance, areas within project management, 4Ps and phases</p> <p>2.6 Tools of Project Management: PERT and CPM, GANTT & Chart Overview of Estimate and Budget</p>	Presentations Case Study Video Demonstrations Presentations Role Play

MANAGEMENT**Course Code : 315301**

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
3	TLO 3.1 Understand the importance of quality management tools TLO 3.2 Explain the importance of various techniques for optimization and waste minimization TLO 3.3 State the importance of ISO quality standards TLO 3.4 Describe ERP TLO 3.5 State the importance of ISO TLO 3.6 Recognize the importance of customer satisfaction as a competitive advantage	Unit - III Management Practices 3.1 Quality circle, kaizen, Six Sigma, TQM 3.2 5S, Kanban card system, TPM, Lean Manufacturing: Meaning, Steps and Importance 3.3 Quality Standards and ISO: Meaning, ISO 9001:2016, ISO 14000, OSHA 2020 3.4 The overview of ERP along with example 3.5 Service quality and customer/client satisfaction, servicescape	Presentation Case study Interactive session Quiz Video Demonstration Lecture Using Chalk-Board
4	TLO 4.1 Explain the importance of marketing techniques TLO 4.2 Explain the importance of needs, wants and desires in marketing TLO 4.3 Interpret the traditional and digital marketing techniques TLO 4.4 Plan different aspects of an event management	Unit - IV Marketing Management 4.1 Marketing management: meaning, significance, Seven P's of Marketing 4.2 Needs, wants and demands in marketing. Customer relationship management 4.3 Types of marketing: traditional and digital marketing 4.4 Event management: types, different aspects of event management, crisis management	Case Study Interactive session based video Role Play Flipped Classroom Presentations
5	TLO 5.1 State the importance of supply chain and logistics management TLO 5.2 Explain the components of supply chain and logistics Management TLO 5.3 Describe the role of information technology in supply chain & logistics management TLO 5.4 State the significance of Human Resource Management TLO 5.5 Analyze the various methods of recruitment, selection and training for an organization TLO 5.6 List the qualities of a successful supervisor	Unit - V Supply Chain & Human Resource Management 5.1 The overview of Supply Chain and logistics Management 5.2 Components of Supply Chain and logistics Management 5.3 Role of information technology in supply chain & logistics management 5.4 Overview of Human Resource Management- Meaning, significance, scope and principles 5.5 Recruitment, selection and training of human resources. Chalk Circle 5.6 Qualities of a successful supervisor /team leader and types of leadership	Presentations Video Demonstrations Case Study Collaborative learning Video Demonstrations Chalk-Board

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES : NOT APPLICABLE.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Assignment / Article

- Make a one page note based on a book of management you read.
- Write a short article on inventory management exploring online learning resources.
- Prepare a report on ISO standards applicable to your field. a. IATF 16949-2016 / SLA-TS 16949-2016, - Automotive Industry b. ISO 22000 — Food safety management c. ISO 50001 — Energy management d. ISO/IEC 27001 - Cyber Security e. ISO/DIS 4931-1 - Buildings and civil engineering works
- Prepare a 4 quadrant matrix of time management for managing the tasks.
- Prepare a report on any one software used for Supply Chain and Logistics Management.
- Prepare a GANTT Chart for project management related to your field.

Note Taking

- Watch a Tedx Talk Video on managerial skills and take notes in the form of keywords.

Case Study

- Prepare a case study and discuss the same on following topics a. Self Management Skills b. Six Thinking Hats c. Kaizen d. Quality Circle e. Safety Measures in different organizations related to your field
- Study the recruitment and selection process of any organization related to your field.
- Prepare a case study on management lessons based on life of Chhatrapati Shivaji Maharaj
- Conduct outbound training on managerial skills. Make a video and upload on social media.

Quizes

- Participate in online quizzes related to areas of management .

Assignment

- Workshops to be conducted for students on following topics a. creativity techniques b. time management c. stress management d. negotiation and conflict e. goal setting f. meditation new product development

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED : NOT APPLICABLE

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	I	Introduction to Management	CO1	13	8	6	4	18
2	II	Product, Operations and Project Management	CO2	8	2	4	6	12
3	III	Management Practices	CO3	8	4	4	6	14
4	IV	Marketing Management	CO4	8	2	4	6	12
5	V	Supply Chain & Human Resource Management	CO5	8	4	4	6	14
Grand Total				45	20	22	28	70

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- MCQ Based Class Test, Self Learning Activities / Assignment

Summative Assessment (Assessment of Learning)

- Summative Assessment (Assessment of Learning) MCQ based

XI. SUGGESTED COS - POS MATRIX FORM

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes* (PSOs)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO1	1	1	1	-	-	2	3			
CO2	1	3	3	-	1	3	3			
CO3	1	3	1	-	1	1	3			
CO4	1	2	2	-	1	2	3			
CO5	1	1	2	-	1	2	3			

Legends :- High:03, Medium:02, Low:01, No Mapping: -

*PSOs are to be formulated at institute level

XII. SUGGESTED LEARNING MATERIALS / BOOKS

MANAGEMENT**Course Code : 315301**

Sr.No	Author	Title	Publisher with ISBN Number
1	A. K. Gupta	Engineering Management	S. Chand, ISBN: 81-219-2812-5, 2007, 2nd Edition
2	O. P. Khanna	Industrial Engineering &management	Dhanpat Rai Publication, ISBN: 978-8189928353, 2018
3	Harold Koontz and Heinz Weinrich	Essentials of Management	Tata McGraw Hill Education ISBN: 9789353168148, 2020, 12th edition
4	E. H. McGrath	Basic Managerial Skills for All	PHI ISBN: 978-8120343146, 2011, 9th Edition
5	Andrew DuBrin	Management Concepts and Cases	Cengage Learning, ISBN: 978-8131510537, 2009, 9th edition
6	K. Dennis Chambers	How Toyota Changed the World	Jaico Books ISBN: 978-81-8495-052-6, 2009
7	Jason D. O'Grandy	How Apple changed the Wolrd	Jaico Publishing House ISBN: 978-81-8495-052-0, 2009
8	Subhash Sharma	Indian Management	New Age International Private Limited ; ISBN-978-9389802412, 2020, 1st edition
9	Chitale, Dubey	Organizational Behaviour Text and Cases	PHI LEARNING PVT. LTD., ISBN: 978-9389347067, 2019, 2nd Edition

XIII . LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://www.debonogroup.com/services/core-programs/six-thinking-hats/	Six Thinking Hats
2	https://hbr.org/1981/09/managing-human-resources	HR Management
3	https://theproductmanager.com/topics/agile-product-management/	Agile Product Management
4	https://www.cdlogistics.ca/freight-news/the-5-components-of-supply-chain-management	Supply Chain Management
5	https://www.infosectrain.com/blog/understanding-the-concepts-of-gantt-chart-and-critical-path-methodology-cpm	PERT, CPM, GANTT Chart
6	https://www.simplilearn.com/best-management-tools-article	Management Tools
7	https://www.psychometrica.in/free-online-psychometric-tests.html	Psychometric Tests
8	https://www.investopedia.com/terms/e/erp.asp	ERP
9	https://asq.org/quality-resources/quality-management-system	QMS
10	https://testlify.com/test-library/creative-thinking/	Psychometric Tests
11	https://www.mindtools.com/	Management Skills
12	https://www.investopedia.com/terms/d/digital-marketing.asp	Digital Marketing

Note :

- Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

CAPSTONE PROJECT**Course Code : 316004**

Programme Name/s	: Automobile Engineering./ Artificial Intelligence/ Artificial Intelligence and Machine Learning/ Automation and Robotics/ Cloud Computing and Big Data/ Civil Engineering/ Chemical Engineering/ Computer Technology/ Computer Engineering/ Civil & Rural Engineering/ Construction Technology/ Computer Science & Engineering/ Digital Electronics/ Data Sciences/ Electrical Engineering/ Electronics & Tele-communication Engg./ Electrical and Electronics Engineering/ Electrical Power System/ Electronics & Communication Engg./ Electronics Engineering/ Computer Hardware & Maintenance/ Industrial Electronics/ Information Technology/ Computer Science & Information Technology/ Civil & Environmental Engineering/ Mechanical Engineering/ Mechatronics/ Production Engineering/ Computer Science/ Electronics & Computer Engg.
Programme Code	: AE/ AI/ AN/ AO/ BD/ CE/ CH/ CM/ CO/ CR/ CS/ CW/ DE/ DS/ EE/ EJ/ EK/ EP/ ET/ EX/ HA/ IE/ IF/ IH/ LE/ ME/ MK/ PG/ SE/ TE
Semester	: Sixth
Course Title	: CAPSTONE PROJECT
Course Code	: 316004

I. RATIONALE

Capstone projects in engineering study are considered important as it allow students to integrate and apply the knowledge and skills acquired throughout their academic program and effectively demonstrating their learning of programme by tackling a real-world problem, ultimately keeping them well prepared for the job market. The capstone project is usually the final assignment and plays a vital role in preparing students for the world of work to its practical applications and ability to help hone students' professional knowledge and skills. Normally, capstone projects are developed in collaboration with industries or businesses, providing students with valuable insights. Capstone projects has been considered as an integral part of diploma curriculum. It helps learners to perform and demonstrate skills gained due to early courses of Diploma study independent. Therefore, this is considered as a course of final year/semester study.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

- Apply professional skills for solving , executing and demonstrating solutions to real-world problems

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 - Elaborate the identified field problem from the perspective of project work at institute.
- CO2 - Conduct feasibility & viability analysis (using data collection, experiments, Simulation , Coding) to validate required resources, cost, support of the project work.
- CO3 - Apply the acquired knowledge and skills in providing solutions to the real field/industrial problems.
- CO4 - Present Project and its output/ findings / achievements alongwith its exhibits.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

CAPSTONE PROJECT**Course Code : 316004**

Course Code	Course Title	Abbr	Course Category/s	Learning Scheme			Credits	Paper Duration	Assessment Scheme								Based on SL	Total Marks			
				Actual Contact Hrs./Week					SLH		NLH	Theory			Based on LL & TL						
				CL	TL	LL					FA-TH	SA-TH	Total	FA-PR	SA-PR	SLA					
				Max	Max	Max					Max	Max	Max	Min	Max	Min					
316004	CAPSTONE PROJECT	CPE	INP	-	-	2	2	4	2	-	-	-	-	-	50	20	50#	20	50	20	150

V. General guidelines for PROJECT WORK

- The Project- problems must be related to the programme or may be interdisciplinary, based on the industry expected outcomes.
- The individual students have different aptitudes and strengths. Project work, therefore, should match the strengths of students. For this purpose, students should be asked to identify the type of project work they would like to execute.
- Project titles are to be finalized in co-ordination/consultation with the Faculty mentor. However, faculty may form a team of students as per specific roles- Literature survey/data collection, data Analysts, model/prototype developers, testers, Project managers using IoTs ITES and software /application development. Study type project is NOT advisable.
- Project must be assigned to a group of 3-4 students under the guidance of identified faculty mentor.
- Students are required to prepare a prototype/working model/software of the Project and simultaneously prepare a report.
- Students shall Submit One Hard copy and one Soft copy each of Project Report and soft-copy of the project code or the working model.
- Students must maintain a project execution diary having the progress steps and details. The concerned faculty should check the diary on a weekly basis and accordingly interact with students based on the progress shown and keep proper record with feedback if any.
- Project shall address National Thrust area such as Environment, Digitization, Automation, sustainability and similar domains.
- Student shall try to use the national and international standards wherever possible (processes / materials / equipments etc ..)

VI. Project facilitation guidelines:

Once the Project statement has been finalized and allotted to the students, the Faculty Mentor role is very important as guide, motivator, catalyser to promote learning and sustain the interest of the students. At the same time the Faculty Mentor is not expected to guide the students on each step, otherwise it will curb the creativity of the students-group. The Faculty Mentor has to work as a mentor. Following should be kept in mind while facilitating the project at the institute:

1. Project orientation cum -briefing: the project should be relevant to the curriculum of the programme. The project shall be cost effective taking safety aspects, ethical issues, environmental issues and confidentiality as per expectation of industry(if any) into consideration, The work may be industry Sponsored.

CAPSTONE PROJECT**Course Code : 316004**

2.Information search and data collection: the information and data should be realistic and relevant to the problem /project. Hypothetical data is not to be taken into consideration.

3.Implementation and Monitoring: The project must have important steps /milestones to achieve as per the time frame/action plan prepared by students and faculty. The monitoring mechanism such as daily/weekly dairy (**Format given below**) must be clearly explained and delineated for the students.

VII.Criteria of Assessment /Evaluation of Project work**A. Formative Assessment (FA) criteria**

The **Formative Assessment (FA)** of the students for 50 marks is to be done based on following criteria.

Appropriate RUBRICS may be used for assessment

Rubrics for Assessment of the team

Sr.No.	Criteria	Marks
1	Project Selection & Problem definition	05
2	Literature survey and data collection/ Gathering	05
3	Design / concept of project/ Working - Execution of Project	10
4	Stage wise progress as per Action plan/milestone	05
5	Quality Report Writing	05

Rubrics for Individual Assessment

Sr.No.	Criteria	Marks
1	Contribution as a team member	05
2	Depth of Knowledge	10
3	Presentation	05

B. Summative Assessment Criteria

- The summative assessment for 50 marks is to be done and based on following criteria. This assessment shall be done by the faculty mentor and External examiner.

Sr.No.	Criteria	Marks
1	Capstone Project Completion as per plan	10
2	Project related Requirement Analysis & Designing	10
3	Developing a Solution with proper justifications, Teamwork	10
4	Project Report Writing	10
5	Project Presentation	10

(**NOTE :** Team based and Individual performance based summative assessment may include Innovativeness , Technology used , user friendliness , cost effectiveness , society benefits etc..)

SUGGESTED RUBRIC FOR SUMMATIVE ASSESSMENT OF CAPSTONE PROJECT**PROJECT ASSESSMENT**

CAPSTONE PROJECT**Course Code : 316004**

Project Title:

Project Assessment Rubric

Performance	Excellent	Good	Fair	Poor
Criteria	9-10 marks.	6-8 marks.	4-5 marks.	0-3 marks
	Excellent	Good	Fair	Poor
Capstone Project Completion	The project is completed as per tasks described in synopsis.	The project is completed but require minor modifications.	The project is completed but require several modifications.	The project is not completed as per tasks described in synopsis.
Project related Requirement Analysis & Designing	9-10 marks. Effectively contributed in requirement analysis and designing.	6-8 marks. Partially Contributed in requirement analysis and designing.	4-5 marks. Attempted to contribute in requirement analysis and designing	0-3 marks No contribution in requirement analysis and designing.
Developing a Solution with proper justifications , Teamwork	9-10 marks. Developed the critical solution modules with Innovation, optimized design and worked very well with the team.	6-8 marks. Developed some solutions with higher complexity and worked well with the team.	4-5 marks. Attempted to develop few solutions and worked with the team.	0-3 marks No contribution in developing a solution and in the team.
Project Report Writing	9-10 marks. Worked very well to submit an excellent project report .	6-8 marks. Worked well to submit the project report with covering all the aspects of a standard report.	4-5 marks. Tried to submit the project report but standard of report was not satisfactory.	0-3 marks No contribution in project report writing.
Project Presentation	9-10 marks. Presented the project work flawlessly.	6-8 marks. Presented the project work very nice.	4-5 marks. Presented the project work not so well.	0-3 marks Presentation skill is not up to the mark.

Project Group Members

ROLL NUMBER/Enrollment Number				
NAME				

CAPSTONE PROJECT**Course Code : 316004****Comments (if any)**

NOTE : “ These are suggestive rubrics Faculty mentor and external examiner may frame different rubrics as per Programme need and assigned Project work “

C. Self Learning Assessment

Self Learning Assessment	Max Marks -50		
Sr.No.	Criteria	Max Marks	Marks Obtained
1	Project Selection & Problem definition	10	
2	Literature survey and data collection/ Gathering	05	
3	Design / concept of project/ Working - Execution of Project	15	
4	Stage wise progress as per Action plan/milestone/ psychomotor motor skills acquired	10	
5	Quality Report Writing	10	

Sr.No.	Criteria	Max Marks	Marks Obtained
1	Project Selection & Problem definition	10	
2	Literature survey and data collection/ Gathering	05	
3	Design / concept of project/ Working - Execution of Project	15	
4	Stage wise progress as per Action plan/milestone/ psychomotor motor skills acquired	10	
5	Quality Report Writing	10	

VIII. CO-PO Mapping

CO-PO mapping will vary project wise and shall be prepared by concerned faculty for the given project

IX. Typographical instructions/guidelines for Project report writing

Following is the suggestive format for preparing the Project report. Actual report may differ slightly depending upon the nature of industry. The training report may contain the following.

- a. The PROJECT report shall be computer typed (English- British) and printed on A4 size paper.
- b. Text Font -Times New Roman (TNR), Size-12 point
- c. Subsection heading TNR- 12 point bold normal
- d. Section heading TNR- 12 capital bold
- e. Chapter Name/ Topic Name – TNR- 14 Capital
- f. All text should be justified. (Settings in the Paragraph)
- g. The report must be typed on one side only with double space with a margin 3.5 cm on the left, 2.5 cm on the top, and 1.25 cm on the right and at bottom.
- h. The training report must be hardbound/ Spiralbound with cover page in black colour. The name of the candidate, diploma (department), year of submission, name of the institute shall be printed on the cover [Refer sample sheet (outer cover)]
- i. The training report, the title page [Refer sample sheet (inner cover)] should be given first then the Certificate followed by the acknowledgment and then contents with page numbers.

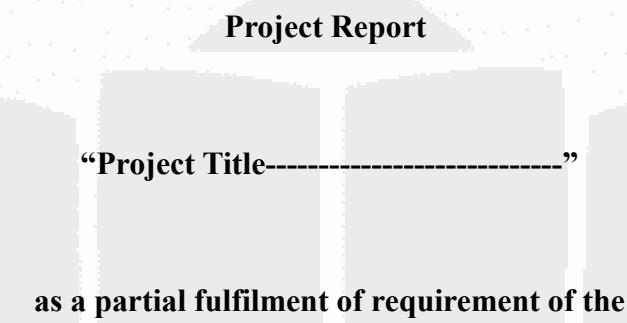
X. Project Report

On completion of the project work, every student will submit a project report which should contain the following:

1. Cover Page (as per annexure 1)
2. Title page (as per annexure 2)
3. Certificate by the Guide (as per annexure 3)
4. Acknowledgment (The candidate may thank all those who helped in the execution of the project.)
5. Abstract (It should be in one page and include the purpose of the study; the methodology used.)

CAPSTONE PROJECT**Course Code : 316004**

6. Table of Contents (as per general guidelines): Detailed description of the project (This should be split in various chapters/sections with each chapter/section describing a project activity in totality).


Chapter-1 Introduction (background of the Industry or User based Problem/Task)
 Chapter-2 Literature Survey (to finalize and define the Problem Statement)
 Chapter-3 Scope of the project
 Chapter-4 Methodology/Approach, if any
 Chapter-5 Details of designs, working and processes
 Chapter-6 Results and Applications

7. Conclusion

8. References (The listing of references should be typed 2 spaces below the heading “REFERENCES” in alphabetical order in single spacing left – justified. It should be numbered consecutively (in square []) brackets, throughout the text and should be collected together in the reference list at the end of the report. The references should be numbered in the order they are used in the text. The name of the author/authors should be immediately followed by the year and other details). Typical examples of the references are given below:

NOTE:

1. Project report must contain only a relevant and short mention – technology or platform or tools used. It must be more focussed on project work and its implementation
2. Students can add/remove/edit chapter names as per the discussion with their guide

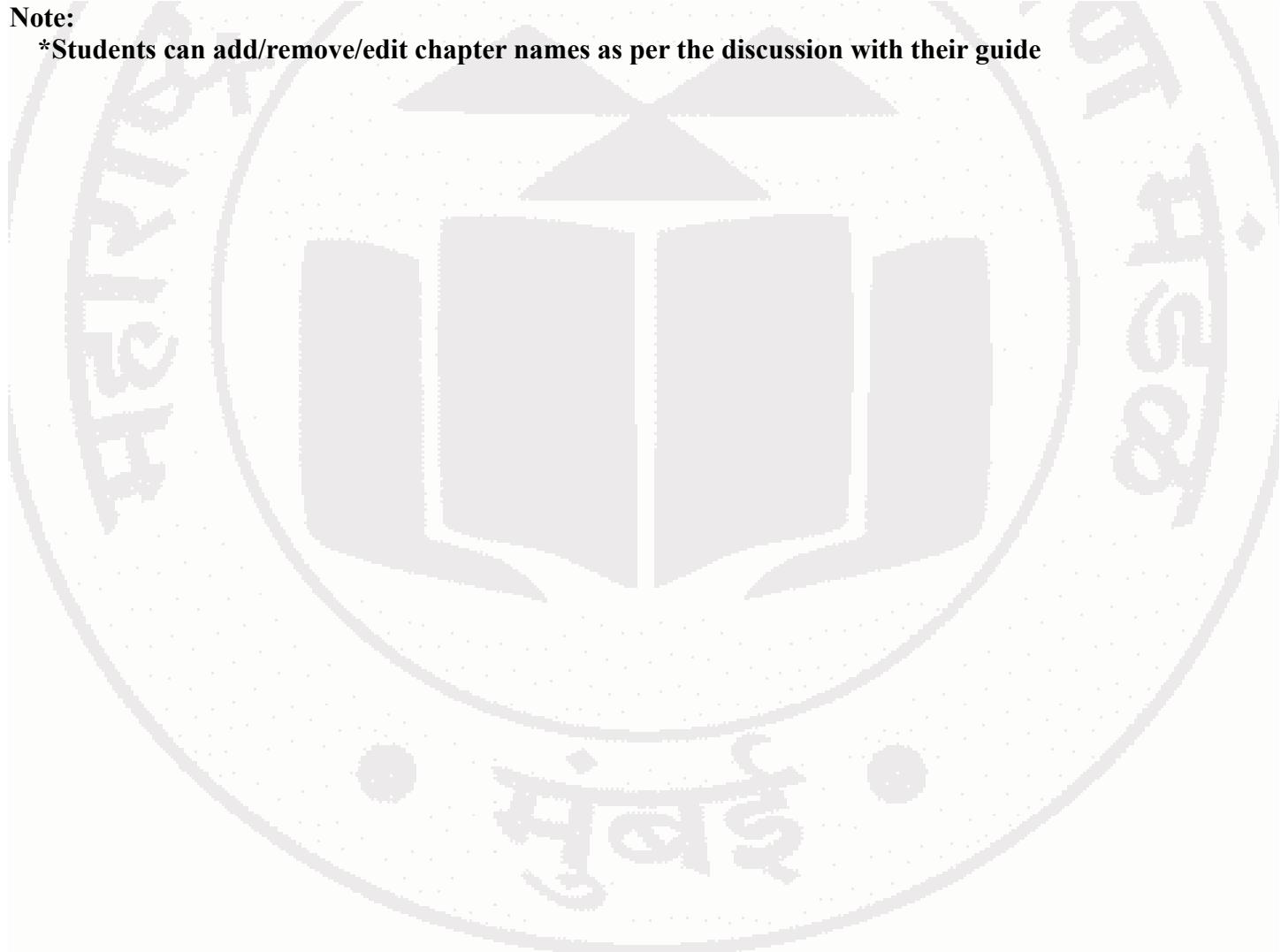
Formats

Submitted by

1) Name Of Student	Enrollment Number
2) Name Of Student	Enrollment Number
3) Name Of Student	Enrollment Number
4) Name Of Student	Enrollment Number

Are the bonafide on**FOR THE ACADEMIC YEAR****20----20---****(H.O.D)****(Principal)****(Internal Guide)****(External Examiner)**

Department Name


(If NBA Accredited mention that)
Institute Name**(An Affiliated Institute of Maharashtra State Board of Technical Education)****Table of Contents**

Title Page		i
Certificate of the Guide		ii
Acknowledgement		iii
Index		iv
Abstract		v
List of Figures		vi
List of Tables (optional)		vii

INDEX		
Sr.No.	Chapter	Page No.
1.	Chapter-1 Introduction (background of the Project Problem)	1
2.	Chapter-2 Literature Survey (to finalize and define the Problem Statement)	5
3.	Chapter-3 Scope of the project	
4.	Chapter-4 Methodology/Approach, if any	
5.	Chapter-5 Details of designs, working and processes	
6.	Chapter-6 Results and Applications	
7.	REFERENCES	

CAPSTONE PROJECT**Course Code : 316004****Note:**

*Students can add/remove/edit chapter names as per the discussion with their guide

Annexure**PROJECT DIARY (Weekly/Daily)**

Name of the Student : _____

Name of Guide (Faculty) : _____

Enrollment Number : _____ **Semester:** _____ **Project batch**
Number : _____

WEEK : _____

Date	Activity carried out (Details)	Achievement of mile stone/step as per plan	Remark of Faculty
------	-----------------------------------	--	-------------------

CAPSTONE PROJECT**Course Code : 316004**

Monday			
Tuesday			
Wednesday			
Thursday			
Friday			
Saturday			

Dated Signature of Faculty**Dated Signature of HOD**

MSBTE LOGO INST LOGO

Certificate*This is to certify that*

CAPSTONE PROJECT**Course Code : 316004**

Mr./Ms.

bearing examination seat No.

has

*Satisfactorily completed his/her **PROJECT** entitled**Along with his/her batchmates in partial fulfillment for the**Diploma Course in**< **PROGRAMME NAME**>**Of the **Maharashtra State Board of Technical Education** at our Polytechnic during the Academic Year 20 -20 .**The Project is completed by a group consisting of Persons under the guidance of the Faculty Guide*

Faculty Name and Signature (Internal)	Faculty Name and Signature (External if applicable)	HOD Name and Signature with Department Stamp
Date and Time		

MSBTE Approval Dt. 04/09/2025**Semester - 6, K Scheme**

EMERGING TRENDS IN ELECTRICAL ENGINEERING**Course Code : 316326**

Programme Name/s	: Electrical Engineering/ Electrical and Electronics Engineering/ Electrical Power System
Programme Code	: EE/ EK/ EP
Semester	: Sixth
Course Title	: EMERGING TRENDS IN ELECTRICAL ENGINEERING
Course Code	: 316326

I. RATIONALE

Emerging technologies evolve rapidly in all the field of engineering and it is essential for technologists to stay updated on these aspects to face the day to day challenges in the industry as well as in the society. This course aims to prepare Diploma Engineers with insights into the emerging technological trends like smart systems, AI, intelligent motor controls and digitization.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to help the student to attain the following Industry identified outcome through various teaching learning experiences: .

- Acquire relevant knowledge of Emerging techniques in electrical engineering fields.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 - Suggest the relevant IoT technologies for electrical systems.
- CO2 - Elaborate the use relevant IoT and SCADA for Automation of electrical Grid systems.
- CO3 - Implement electrical engineering related emerging trends to develop smart city.
- CO4 - Suggest the relevant IMCC for the given application (s).
- CO5 - Select the relevant improved tariff and billing solution for the specified type of consumer.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

Course Code	Course Title	Abbr	Course Category/s	Learning Scheme			Credits	Paper Duration	Assessment Scheme								Total Marks		
				Actual Contact Hrs./Week					Theory			Based on LL & TL			Based on SL				
				CL	TL	LL	SLH	NLH	FA-TH	SA-TH	Total		Practical		SLA				
											Max	Max	Max	Min	Max	Min	Max	Min	
316326	EMERGING TRENDS IN ELECTRICAL ENGINEERING	ETE	DSC	4	-	-	-	4	2	1.5	30	70*	100	40	-	-	-	100	

EMERGING TRENDS IN ELECTRICAL ENGINEERING**Course Code : 316326****Total IKS Hrs for Sem. : 0 Hrs**

Abbreviations: CL- ClassRoom Learning , TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\\$ Internal Online Examination

Note :

1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
5. 1 credit is equivalent to 30 Notional hrs.
6. * Self learning hours shall not be reflected in the Time Table.
7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Explain the specified Industrial Revolution with respect to the driving force behind it. TLO 1.2 Explain the Industrial Revolution 4.0 with respect to the specified component (s). TLO 1.3 Explain the changes in Industry 4.0 with respect to AIML and 5G. TLO 1.4 Explain the Importance of Industrial revolution 5.0. TLO 1.5 Explain the Principle and features of IoT. TLO 1.6 Apply the concepts of IoT in the given electrical systems.	Unit - I Digitization beyond Automation 1.1 Industrial Revolutions: Versions 1.0, 2.0, 3.0 and 4.0; the driving force for these revolutions. 1.2 Components of Industrial Revolution 4.0: Digitization, CPS (Cyber Physical Systems), IoT (Internet of Things), Cloud Computing and Cloud Manufacturing. 1.3 Role of 5G Communication, Machine learning (ML) and AI in Industry 4.0. 1.4 Industry Revolution 5.0: Introduction and Key Features. 1.5 IoT: Principle and features. 1.6 Applications of IoT in Industrial drives, Transmission System, Distribution System, Illumination system and Renewable energy.	Lecture Using Chalk-Board Video Demonstrations Flipped Classroom Presentations

EMERGING TRENDS IN ELECTRICAL ENGINEERING

Course Code : 316326

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
2	<p>TLO 2.1 Describe the smart grid with respect to the need, layout and its components.</p> <p>TLO 2.2 Explain the concept and formation of micro grid.</p> <p>TLO 2.3 Explain the given Distributed Generation technology(ies) in the power sector.</p> <p>TLO 2.4 Describe the role of Distributed Generation in the given Grid system.</p> <p>TLO 2.5 Use features of Automation System in smart substation.</p> <p>TLO 2.6 Identify specific application of IoT and SCADA for particular Grid.</p>	<p>Unit - II Smart Grid</p> <p>2.1 Smart Grid: Need and evolution, layout and its components, advantages and barriers, Smart Grid projects in India.</p> <p>2.2 Micro-Grid: Need and formation of Micro Grid.</p> <p>2.3 Distributed Energy Resources: Distributed generation systems and distributed generation technologies.</p> <p>2.4 Role of distributed generation in Smart Grid and Micro Grid.</p> <p>2.5 Substation Automation System (SAS): Need, layout and components, salient features of substation automation.</p> <p>2.6 IoT and SCADA application in Grid systems.</p>	Lecture Using Chalk-Board Video Demonstrations Flipped Classroom Presentations Site/Industry Visit
3	<p>TLO 3.1 Describe the smart city with respect to the needs, components and its challenges.</p> <p>TLO 3.2 Explain relevant technology associated with Metro/ EV.</p> <p>TLO 3.3 Compare various EV's based on the given criteria (s).</p> <p>TLO 3.4 Describe smart home on the basis of the given criteria (s).</p> <p>TLO 3.5 Implement the Renewable energy related policies in smart city.</p>	<p>Unit - III Smart City (Electrical Features)</p> <p>3.1 Smart City: Features, components, objectives and challenges of smart cities in India.</p> <p>3.2 Intercity Transportation: EV / Metro: Types, data-driven operations, automated train operation (ATO), autonomous driving technology, efficient charging infrastructure, wireless charging: opportunities and challenges.</p> <p>3.3 Comparison between various types of Electric Vehicles: technology, type of motor, efficiency, batteries etc.</p> <p>3.4 Smart Home: Features and components, role of AI powered illumination system and advancement in luminaries. smart appliance control principles (block diagram/s).</p> <p>3.5 Renewable Energy: Role, opportunities, government policies: center / state.</p>	Lecture Using Chalk-Board Video Demonstrations Flipped Classroom Presentations Site/Industry Visit

EMERGING TRENDS IN ELECTRICAL ENGINEERING**Course Code : 316326**

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
4	<p>TLO 4.1 Describe the conventional MCC considering the given points.</p> <p>TLO 4.2 Explain the IMCC based on the given point (s).</p> <p>TLO 4.3 Describe advantages and limitations of modern MCCs including lack of networking and diagnostics.</p> <p>TLO 4.4 Describe the salient features of the given basic components of intelligent system.</p> <p>TLO 4.5 Describe the salient features of the given components and devices of IMCC.</p> <p>TLO 4.6 Compare intelligent and conventional MCC on the basis of the given criteria.</p>	<p>Unit - IV Intelligent Motor Control Centers</p> <p>4.1 Conventional Motor Control Center (MCC): Role in motor protection and management, typical block diagram and architecture, components: symbols and functions.</p> <p>4.2 Intelligent or Smart MCCs (IMCCs): Need and evolution from traditional MCCs. Functional block diagram and general arrangement, integration of industrial IoT (IIoT) and cloud-based real-time monitoring.</p> <p>4.3 Applications, advantages and limitations in modern MCCs including lack of networking and diagnostics.</p> <p>4.4 Basic Components of Intelligent Systems: Microprocessor / microcontroller-based control; networking technologies (Ethernet / IP, Modbus, PROFINET) replacing hard wiring, enhanced diagnostics, AI-based predictive maintenance, smart sensors, and edge computing for real-time diagnostics and wireless communication (Bluetooth, Zigbee) for remote control.</p> <p>4.5 IMCC Components and Devices: Intelligent relays, digital fuses, cybersecurity features, dedicated software and advanced control devices.</p> <p>4.6 Selection of MCC: Comparison between Intelligent and conventional MCC; Energy efficiency, cybersecurity, networking, and automation. Smart power management with power factor correction (PFC) and harmonic filtering for efficiency.</p>	Lecture Using Chalk-Board Video Demonstrations Flipped Classroom Presentations Site/Industry Visit
5	<p>TLO 5.1 Describe the given term(s) related to tariff economics.</p> <p>TLO 5.2 Explain the key factors required for the given type of tariff design.</p> <p>TLO 5.3 Explain the communication technologies used in the given type (s) of smart meters.</p> <p>TLO 5.4 State the relevant MERC rules applicable for Net-metering billing.</p> <p>TLO 5.5 Describe the use of deep learning model and communication methods in MRI / AMR.</p>	<p>Unit - V Tariff and Smart Billing</p> <p>5.1 Tariff: Power purchase, Power purchase agreements (PPA), Power purchase cost.</p> <p>5.2 Tariff Design: Key factors for tariff design, major components of an electricity bill, various slabs in billing, electricity duty, tax on electricity and cross subsidy.</p> <p>5.3 Smart Metering: Components working principle, types of smart meters, features, communication technologies, advantages, challenges, role in Grid System.</p> <p>5.4 Metering and Bill Management: Working of net metering and gross metering, MERC rules for net-metering bill (Latest Amendment), application of net metering for integration of micro-generators with grid system.</p> <p>5.5 Meter reading techniques: use of deep learning model and communication methods in MRI / AMR.</p>	Lecture Using Chalk-Board Video Demonstrations Flipped Classroom Presentations

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES : NOT APPLICABLE.**VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING /****MSBTE Approval Dt. 04/09/2025****Semester - 6, K Scheme**

EMERGING TRENDS IN ELECTRICAL ENGINEERING**Course Code : 316326****SKILLS DEVELOPMENT (SELF LEARNING)****Micro project**

- Prepare a report on grid maintenance by using Drone
- Prepare a report on Role of 3D printer in Electrical Model design.
- Prepare a report on Flexible Electricity Billing System
- Prepare a report on Role of Smart CCTV in Smart City

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Not Applicable	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	I	Digitization beyond Automation	CO1	12	6	6	2	14
2	II	Smart Grid	CO2	10	6	6	2	14
3	III	Smart City (Electrical Features)	CO3	12	4	6	4	14
4	IV	Intelligent Motor Control Centers	CO4	14	6	6	2	14
5	V	Tariff and Smart Billing	CO5	12	6	6	2	14
Grand Total				60	28	30	12	70

X. ASSESSMENT METHODOLOGIES/TOOLS**Formative assessment (Assessment for Learning)**

- Formative assessment (Assessment for Learning) Two unit tests of 30 marks will be conducted and average of two unit tests considered.

Summative Assessment (Assessment of Learning)

- End semester assessment of 70 marks through Online mode of examination.

XI. SUGGESTED COS - POS MATRIX FORM

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes* (PSOs)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO1	3	1	2	1	2	1	1			
CO2	3	1	2	1	2	1	1			
CO3	3	1	2	2	2	2	2			
CO4	3	1	2	2	1	1	1			
CO5	3	1	1	1	1	1	1			

Legends :- High:03, Medium:02, Low:01, No Mapping: -

*PSOs are to be formulated at institute level

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	S K Bhattacharya	Control of Electrical Machines	New Age International ISBN13: 8122409970, 9788122409970
2	Akihiko Yokoyama	Smart Grid: Fundamentals, Design, Technology, Applications, Communication and Security, An Indian Adaptation	Wiley, 1 April 2021 Edition ISBN-13: 978-9354243219
3	Frank D. Petruzzella	Electrical Motor Control Systems	McGraw-Hill College, 22 November 2019, ISBN-13: 978-1260439397
4	Merizalde	Encyclopaedia of Applied Intelligent Control of Induction Motor Drives	Auris Reference (1 April 2018) ISBN-13: 978-1788022651
5	P K Pandey	IOT (Internet of things) and Its Application	T Balaji Publication (1 January 2020) ISBN 13:978-8194136385
6	Pandian Vasant	Artificial Intelligence in Industry 4.0 and 5G Technology	Wiley 30 June 2022 ISBN-13: 978-1119798767

XIII . LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	41.-30.12.2019-Grid-Interactive-RRE-Regulations2019-English.pdf	MERC rules for net-metering bill
2	https://youtu.be/Xpb9XKmRsyw?si=0oLY-lKVyvPWiBSE	History of Industrial Revolution
3	https://www.geeksforgeeks.org/introduction-to-internet-of-things-iot-set-1/	Introduction to Internet of Things (IoT)
4	https://www.researchgate.net/publication/321529309_Sustainable_Smart_Cities_in_India_Challenges_and_Future_Perspectives	Sustainable Smart Cities in India: Challenges and Future Perspectives

EMERGING TRENDS IN ELECTRICAL ENGINEERING**Course Code : 316326**

Sr.No	Link / Portal	Description
5	https://www.iea.org/energy-system/electricity/smart-grids	Electricity smart grid
6	https://electricalengineerpro.com/latest-trends-in-electrical-engineering/	Trends in Electrical Engineering
7	https://www.youtube.com/watch?v=MTqML_JCpsY	Intelligence motor control system for engineers (Hindi)
8	https://www.youtube.com/watch?v=IEsmG83IxLs	IMCC Drawing, IMCC RDOL Drawing, IMCC Panel drawing, IMCC PRO V DRAWING, IMCC Simocode drawing

Note :

- Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 04/09/2025**Semester - 6, K Scheme**

ENERGY CONSERVATION AND AUDIT**Course Code : 316327**

Programme Name/s : Electrical Engineering/ Electrical Power System
Programme Code : EE/ EP
Semester : Sixth
Course Title : ENERGY CONSERVATION AND AUDIT
Course Code : 316327

I. RATIONALE

Due to rapid industrialization, urbanization, and population growth, the world is experiencing an increasing demand for electrical energy. The fossil fuels prime source for generation of electrical energy are depleting at faster rate. One unit of saving of electricity is equivalent to two units of electricity generated. Hence conserving energy is responsibility of every citizen. This curriculum enables the diploma students with the skill sets of carrying out energy audit and conserve electrical energy in electrical systems.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to help the student to attain the following industry-identified competency through various teaching-learning experiences :

- Implement energy-saving measures and conduct comprehensive energy audits.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 - Interpret energy conservation policies in India.
- CO2 - Implement energy conservation techniques in electrical machines.
- CO3 - Apply energy conservation techniques in electrical installations.
- CO4 - Use Co-generation and relevant tariff for reducing losses in facilities.
- CO5 - Carryout energy audit for electrical system.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

Course Code	Course Title	Abbr	Course Category/s	Learning Scheme				Credits	Paper Duration	Assessment Scheme								Total Marks							
				Actual Contact Hrs./Week			SLH			Theory			Based on LL & TL		Based on SL										
				CL	TL	LL				Theory		Practical		FA-TH		SA-TH		Total							
										Max	Max	Max	Min	Max	Min	Max	Min	SLA							
										Max	Max	Max	Min	Max	Min	Max	Min	Max	Min						
316327	ENERGY CONSERVATION AND AUDIT	ECA	DSC	4	-	2	2	8	4	3	30	70	100	40	25	10	25#	10	25	10	175				

ENERGY CONSERVATION AND AUDIT**Course Code : 316327****Total IKS Hrs for Sem. : 0 Hrs**

Abbreviations: CL- ClassRoom Learning , TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\\$ Internal Online Examination

Note :

1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
5. 1 credit is equivalent to 30 Notional hrs.
6. * Self learning hours shall not be reflected in the Time Table.
7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Present the current scenario of conventional and non-conventional energy sources in India. TLO 1.2 Differentiate between energy management, energy efficiency, energy conservation and energy audit. TLO 1.3 Explain the salient features of Energy conservation act 2001. TLO 1.4 Describe the role of BEE, MEDA and MNRE. TLO 1.5 Interpret the Star Labeling of the given electrical equipment. TLO 1.6 Explain the Concept of energy conservation and its benefits. TLO 1.7 Describe the key features of ECBC and green buildings.	Unit - I Fundamentals of Energy Conservation and Management 1.1 Energy Scenario: Primary and secondary energy sources, energy demand and supply at National level. 1.2 Energy management, energy efficiency, energy conservation and energy audit: Objectives, concepts and difference. 1.3 Energy Conservation Act 2001 with latest amendments: Key provisions and relevant clauses. 1.4 Role of: Bureau of Energy Efficiency (BEE), Maharashtra Energy Development Agency (MEDA) and Ministry of New and Renewable Energy (MNRE). 1.5 Star labeling: Need, significance and benefits. 1.6 Concept of energy conservation and benefits. 1.7 Energy Conservation Building Codes (ECBC) with latest revision, concept of green buildings.	Lecture Using Chalk-Board Flipped Classroom Video Demonstrations Case Study Presentations

ENERGY CONSERVATION AND AUDIT**Course Code : 316327**

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
2	<p>TLO 2.1 Justify the need and significance of energy conservation in induction motor and transformer.</p> <p>TLO 2.2 Enlist the energy conservation techniques for a given three phase induction motor.</p> <p>TLO 2.3 Describe the energy conservation techniques for a given Transformer.</p> <p>TLO 2.4 Describe the key features and working of a given energy conservation equipment.</p> <p>TLO 2.5 Compare energy efficient motor with standard motor.</p> <p>TLO 2.6 Compare energy efficient transformer with standard transformer.</p> <p>TLO 2.7 State the energy conservation strategies in compressors pumps, fans and blowers.</p>	<p>Unit - II Energy Conservation in Electrical Machines</p> <p>2.1 Need and significance of energy conservation in induction motor and transformer.</p> <p>2.2 Energy conservation techniques in induction motor by: Improving power quality, motor survey, matching motor with loading, minimizing the idle and redundant running of motor, operating in star mode, rewinding of motor, replacement by energy efficient motor, periodic maintenance, by using sensor based motors.</p> <p>2.3 Energy conservation techniques in transformer: Load sharing, parallel operation, isolating techniques, replacement by energy efficient transformers, periodic maintenance.</p> <p>2.4 Energy conservation equipment- key features and working of: Soft starters, Automatic star delta convertor, Variable Frequency Drives (VFD).</p> <p>2.5 Energy efficient motor: Key features, merits, demerits, comparison with standard motor.</p> <p>2.6 Energy efficient transformers: Amorphous transformers, epoxy resin-cast transformer and dry-type of transformer.</p> <p>2.7 Methods and techniques of energy conservation in compressors pumps, fans and blowers.</p>	<p>Lecture Using Chalk-Board</p> <p>Flipped Classroom</p> <p>Video</p> <p>Demonstrations</p> <p>Case Study</p> <p>Site/Industry Visit</p>

ENERGY CONSERVATION AND AUDIT**Course Code : 316327**

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
3	<p>TLO 3.1 Interpret losses in the given power system.</p> <p>TLO 3.2 Explain the method to reduce the specified technical loss in the given electrical installation.</p> <p>TLO 3.3 Explain the method to reduce the specified commercial loss in the given electrical installation.</p> <p>TLO 3.4 Select the relevant energy conservation equipment for the given system with justification.</p> <p>TLO 3.5 Explain energy conservation measures for the specified lighting installation.</p> <p>TLO 3.6 State the energy conservation strategies in fan and regulator.</p> <p>TLO 3.7 Describe energy conservation techniques in EVs and batteries.</p>	<p>Unit - III Energy conservation in Electrical Installation system</p> <p>3.1 Aggregate technical and commercial losses (ATC).</p> <p>3.2 Technical losses: Causes and remedies-Controlling copper losses, optimizing distribution voltage, balancing phase currents, compensating reactive power flow.</p> <p>3.3 Commercial losses: Causes and remedies.</p> <p>3.4 Energy conservation equipment: Maximum Demand Controller, kVAR Controller, Capacitor bank, Automatic Power Factor controller (APFC), Intelligent Power Factor Controller (IPFC) and Active Harmonic Filters (AHF).</p> <p>3.5 Energy Conservation in Lighting systems: Replacing Lamp sources, using energy efficient luminaries, using light controlled gears, Installation of separate transformer / servo stabilizer for lighting, use of sensors- motion, occupancy, proximity, color, photo sensitive sensors, Periodic survey and adequate maintenance programs.</p> <p>3.6 Energy conservation techniques in fans, electronic regulators using solid state devices.</p> <p>3.7 Energy conservation techniques in electric vehicles and batteries.</p>	<p>Lecture Using Chalk-Board</p> <p>Flipped Classroom</p> <p>Case Study</p> <p>Video</p> <p>Demonstrations</p> <p>Site/Industry Visit</p>

ENERGY CONSERVATION AND AUDIT**Course Code : 316327**

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
4	<p>TLO 4.1 Enumerate the factors governing the selection of co-generation system.</p> <p>TLO 4.2 Describe suitable type of co-generation system for the given facility.</p> <p>TLO 4.3 Describe the function of combined heat and power (CHP) system in the given facility.</p> <p>TLO 4.4 Explain a given type of tariff structure.</p> <p>TLO 4.5 Describe the suitable tariff system for reducing the electricity bill of a given facility.</p> <p>TLO 4.6 Compare two different tariff structure illustrating electrical energy conserved in a given facility.</p>	<p>Unit - IV Energy Conservation via Cogeneration and Tariff</p> <p>4.1 Co-generation: Concept, factors governing the selection of co-generation system and its advantages.</p> <p>4.2 Types of co-generation: Based on sequence of energy use: Topping cycle, Bottoming cycle, Based on technology: Steam turbine, Gas turbine and Reciprocating engine co-generation.</p> <p>4.3 Captive Power Plant: Combined Heat and Power (CHP) system.</p> <p>4.4 Tariff: Concept from the point of view of energy conservation, Types of tariff structure: LT, HT, Special, Time-off-day, Peak-off-day, Power factor tariff, Maximum Demand tariff, Load factor tariff and Availability Based Tariff (ABT), kVAh tariff, Concept of flexible tariff.</p> <p>4.5 Application of tariff system to reduce energy bill (Numerical).</p> <p>4.6 Recent tariff structure of different utilities.</p>	<p>Lecture Using Chalk-Board</p> <p>Flipped Classroom</p> <p>Video</p> <p>Demonstrations</p> <p>Case Study</p> <p>Site/Industry Visit</p>

ENERGY CONSERVATION AND AUDIT

Course Code : 316327

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
5	<p>TLO 5.1 Define energy audit and list the benefits.</p> <p>TLO 5.2 Justify significance of specific energy consumption.</p> <p>TLO 5.3 Explain the types of energy audit.</p> <p>TLO 5.4 Suggest relevant instrument (s) for the specified energy audit with justification.</p> <p>TLO 5.5 Develop questionnaire for the energy audit of the given facility.</p> <p>TLO 5.6 Develop the energy flow diagram of the given facility/ apparatus.</p> <p>TLO 5.7 Calculate the Simple Pay Back period, IRR for the facility created.</p> <p>TLO 5.8 Describe energy audit procedure followed.</p> <p>TLO 5.9 Prepare the energy audit report for the given facility/ apparatus.</p> <p>TLO 5.10 Describe the roles and responsibilities of energy manager and auditor.</p>	<p>Unit - V Energy Audit</p> <p>5.1 Energy audit: Definition and its benefits.</p> <p>5.2 Significance of Specific energy consumption pattern.</p> <p>5.3 Types of energy audit: Walk through and detailed audit.</p> <p>5.4 Energy audit instruments and their use: Electrical measuring instruments, power analyzer, lux meter, smart energy meter, fuel efficiency monitor, combustion gas analyzer, thermometer, flow meter and tachometer.</p> <p>5.5 Questionnaire for energy audit projects.</p> <p>5.6 Energy flow diagram (Sankey diagram).</p> <p>5.7 Simple payback period, Internal Rate of Return (IRR) (Numerical).</p> <p>5.8 Energy Audit procedure.</p> <p>5.9 Typical Energy Audit report format commonly used in industries.</p> <p>5.10 Roles and responsibilities of energy manager and auditor.</p>	<p>Lecture Using Chalk-Board</p> <p>Flipped Classroom</p> <p>Video Demonstrations</p> <p>Case Study</p> <p>Site/Industry Visit</p>

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Identify star labelled appliances and compare them for various star ratings.	1	*Identification of star labelled electrical appliances/equipment and compare data sheets of various star labelled ratings.	2	CO1
LLO 1.2 Compare the data sheet of various star rating appliances.	2	Comparison of energy consumption in a green building with a conventional building using energy conservation instruments.	2	CO1

ENERGY CONSERVATION AND AUDIT

Course Code : 316327

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 3.1 Perform an experiment on three phase induction motor both in star and delta mode. LLO 3.2 Measure the effect of voltage reduction in power consumption.	3	*Determination of reduction in power consumption in star mode operation of 3 phase Induction motor compared to delta mode.	2	CO2
LLO 4.1 Perform load test on three phase induction motor for different loading conditions. LLO 4.2 Plot the graph of efficiency verses percentage loading of induction motor.	4	*Performance of load test on three phase induction motor for different loading conditions and plot the curve.	2	CO2
LLO 5.1 Compare energy conserved in two identical transformers where one is a single-phase transformer, and the other one comprises of two single phase transformers in parallel operation (For the same load). LLO 5.2 Observe the effect of load sharing on energy consumption.	5	Comparison of energy conserved in two identical transformers where one is a single-phase transformer and the other one comprises of two single phase transformers in parallel operation. (For the same load).	2	CO2
LLO 6.1 Improve power factor of given load using APFC. LLO 6.2 Using APFC for improving power factor.	6	Power factor improvement using APFC.	2	CO2 CO3
LLO 7.1 Improve power factor of given load using static capacitor. LLO 7.2 Calculate the value of capacitor to change from initial power factor to desired power factor.	7	*Power factor improvement using static capacitor.	2	CO2 CO3
LLO 8.1 Improve power factor of given load using IPFC. LLO 8.2 Using IPFC for improving power factor.	8	Power factor improvement using IPFC.	2	CO2 CO3
LLO 9.1 Compare power consumption of different types of Tube Light with choke, electronic ballast and LED lamps by direct measurement.	9	*Comparison of power consumption of different types of Tube Light with choke, electronic ballast and LED lamps by direct measurement.	2	CO3
LLO 10.1 Determine the reduction in power consumption by replacement of different lamps in a classroom / laboratory by energy efficient lamps.	10	*Comparison of reduction in power by replacement of lamps in a classroom / laboratory by energy efficient lamps.	2	CO3
LLO 11.1 Suggest suitable tariff for energy conservation and reduction of energy bill for an industrial customer. LLO 11.2 Interpreting electricity bill of an industrial consumer.	11	Tariff for industrial consumer for reducing the electricity bill.	2	CO4

ENERGY CONSERVATION AND AUDIT**Course Code : 316327**

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 12.1 Suggest suitable tariff for energy conservation and reduction of energy bill for a commercial customer. LLO 12.2 Interpreting electricity bill of a commercial customer.	12	Tariff for commercial consumer for reducing the electricity bill.	2	CO4
LLO 13.1 Suggest suitable tariff for energy conservation and reduction of energy bill for a residential customer. LLO 13.2 Interpreting electricity bill of a residential customer.	13	*Tariff for residential consumer for reducing the electricity bill.	2	CO4
LLO 14.1 Estimate energy saving by improving power factor and load factor for given case.	14	Estimation of Energy saved by improving power factor and load factor for given case.	2	CO3 CO4
LLO 15.1 Prepare a sample energy audit questionnaire for a given facility.	15	Preparation of Energy audit questionnaire for the given facility.	2	CO5
LLO 16.1 Prepare energy audit report of your electrical department.	16	*Preparation of Energy audit report of electrical department.	2	CO5
LLO 17.1 Perform load test on three phase SCIM using DOL, star delta and soft starter. LLO 17.2 Compare the energy consumption in all three cases.	17	Comparison of energy consumption using DOL, star delta and soft starter in a three-phase induction motor.	2	CO2
LLO 18.1 Carryout energy audit using energy audit software such as SafetyCulture (formally iAuditor) or EnergyCAP. LLO 18.2 Use energy audit software SafetyCulture (formally iAuditor) or EnergyCAP.	18	Energy audit using energy audit software such as SafetyCulture (formally iAuditor), EnergyCAP or any other equivalent software.	2	CO5

Note : Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)**Micro project**

- Collect electricity bill of your institute and suggest suitable measures for energy conservation and reduction of energy bill.
- Prepare Energy conservation chart using different luminaries.
- Prepare an energy audit report of your department/Institute/Workshop using energy audit instruments.
- Visit MEDA website and enlist various energy conservation schemes. Prepare a presentation highlighting the salient features of any one scheme. (objectives, entitlement, methodology and financial assistance etc.)
- Carry out a case study of at least two nearby industries and prepare a report on energy conservation measures adopted by them.

ENERGY CONSERVATION AND AUDIT**Course Code : 316327**

- Carry out internet survey (BEE) to collect information and prepare a report related to any two energy conservation projects.
- Poster preparation and competition on energy conservation (Visit MEDA website).

Assignment

- Visit a facility adopting cogeneration system and prepare a presentation.
- Estimate the payback period, depreciation cost, for the given energy saving equipment in the transmission and distribution system.
- Prepare a report on maintenance procedure followed for improving efficiency of a given lighting scheme.
- Collect information about energy efficient luminaries and prepare a report on it.
- Write report on performance of motor after rewinding.
- Compile the energy saved in at least five star labeled various appliances and prepare a report.
- Prepare a report on various star labeled equipment.
- Compare the energy conserved by an energy efficient motor with a standard motor and prepare a report.
- Prepare a report on BIS standards related to Energy Conservation

Seminar topics

- Energy conservation act 2001.
- Energy conservation equipment
- Cogeneration and its advantages in energy conservation.
- “Bachat Lamp Yojana” Scheme.
- Energy Audit instruments and their working.
- Energy conservation schemes of Maharashtra.

Visit

- Visit to your nearby market/shop for Identifying star labeled electrical apparatus and compare the data for various star ratings. Prepare a chart and submit the report.
- Visit nearby industry which has a captive power plant and observe the working of Captive power plant its inputs and outputs. Prepare a report and submit with the main focus on energy saved due to captive power plant.

Self-learning topics

- Captive Power Plant
- Demand side management.
- Green buildings.
- Energy conservation initiatives in Agricultural sector.

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Lux meter	15,16
2	Soft starter/ DOL starter/ star delta starter.	17
3	Energy audit software such as SafetyCulture (formally iAuditor), EnergyCAP or any other equivalent open-source software.	18
4	Star delta convertor.	3
5	Induction motor: Single phase/three phase.	3,4
6	Clamp on ammeter.	3,4,5,7,9
7	Ammeter: MI type, AC/ DC 0-5-10Amp.	3,4,5,7,9
8	Voltmeter: MI type, AC/DC, 0-150/300V, 0-250/500V.	3,4,5,7,9
9	Wattmeter: Single phase/three phase, single element/double element, 2.5/5Amp -5/10 Amp, 200/400V -250/500V.	3,4,5,7,9,10,17
10	Multi-function meter.	3,4,5,7,9,10,17
11	Single/ three phase power factor meters: AC, 415V, 50 Hz, 5-10 Amp.	4,7
12	Transformer: Single phase.	5
13	Automatic power factor controller.	6
14	Low power factor wattmeter: Single phase, 5/10Amp, 250/500V.	6,8
15	Load bank.	7
16	Single phase capacitor bank.	7
17	Electronic choke, electronics ballast.	7,9
18	Intelligent power factor controller.	8
19	LED lamp/ tube.	9
20	Tube light (Fluorescent Tube/ CFL)	9

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	I	Fundamentals of Energy Conservation and Management	CO1	8	2	2	4	8
2	II	Energy Conservation in Electrical Machines	CO2	14	4	4	6	14
3	III	Energy conservation in Electrical Installation system	CO3	14	2	6	8	16
4	IV	Energy Conservation via Cogeneration and Tariff	CO4	14	4	4	8	16
5	V	Energy Audit	CO5	10	2	6	8	16
Grand Total				60	14	22	34	70

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- Two unit tests, each worth 30 marks, will be conducted, and the average of the two tests will be considered.

ENERGY CONSERVATION AND AUDIT**Course Code : 316327**

- For formative assessment of laboratory learning 25 marks: Each practical will be assessed considering appropriate % weightage to process and product and other instructions of assessment. and the average of all practical will be considered.

Summative Assessment (Assessment of Learning)

- End semester summative assessment of 25 marks for laboratory learning.
- End semester assessment of 70 marks through offline mode of examination.

XI. SUGGESTED COS - POS MATRIX FORM

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes* (PSOs)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO1	3	1	1	-	2	-	3			
CO2	3	2	2	1	2	1	3			
CO3	3	3	3	2	2	1	3			
CO4	3	3	3	2	2	1	3			
CO5	3	3	3	3	2	3	3			

Legends :- High:03, Medium:02, Low:01, No Mapping: -

*PSOs are to be formulated at institute level

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	Bureau of Energy Efficiency (BEE)	Guidebooks no. 1 to 4 for National Certification Examination for Energy Managers and Energy Auditors	Bureau of Energy Efficiency (A Statutory body under Ministry of Power, Government of India) (Fourth Edition 2015)
2	Dr. Sanjeev Singh, Dr. Umesh Rathore	Energy Management	S K Kataria & Sons, New Delhi. ISBN-13: 9789350141014
3	V.K.Mehta and Rohit Mehta	Principles of Power System	S. Chand & Co. New Delhi, 2022, ISBN: 9789355010773
4	Anil Kumar, Om Prakash, Prashant Singh Chauhan, Samsher Gautam	Energy Management Conservation and Audits	CRC Press, 2020, ISBN: 9780429325458
5	Stephan A. Roosa, Steve Doty, Wayne C. Turner	Energy Management Handbook	Fairmount Press, New York 2020 ISBN: 9781003151364
6	Murphy W.R.	Energy Management	Butterworth-Heinemann Publication, ISBN: 9788131207383.
7	K.V. Sharma, P. Venkataseshaiah.	Energy Management and Conservation	I K International Publishing House Pvt. Ltd; 2011 ISBN 9789381141298

ENERGY CONSERVATION AND AUDIT**Course Code : 316327**

Sr.No	Author	Title	Publisher with ISBN Number
8	Yogendra V. Talware.	Art of reading Electricity bills.	Dnyatavya Prakashan

XIII . LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://mnre.gov.in/	Information about new and renewable energy.
2	https://powermin.gov.in/	Indian power scenario.
3	https://aipnpsc.org/Guidebooks.aspx	BEE guidebooks 01 to 04.
4	https://akshayurja.gov.in/res/renw-all-india-cp	Akshay Urja Ministry of New and Renewable Energy (MNRE)
5	https://www.mahaurja.com/meda/en/energy_conservation/energy_conservation_program	Energy Conservation Schemes in Maharashtra state (MEDA)
6	https://www.eia.gov/totalenergy/	U S Energy information administration.
7	https://beeindia.gov.in/sites/default/files/ECBC%20User%20Guide%20V-0.2%20(Public).pdf	Energy Conservation Building Code User Guide.
8	https://iiec.org/	International Institute for Energy Conservation (IIEC)
9	https://cea.nic.in/	Central Electricity Authority

Note :

- Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 04/09/2025**Semester - 6, K Scheme**

MAINTENANCE OF ELECTRICAL EQUIPMENTS**Course Code : 316328****Programme Name/s : Electrical Engineering/ Electrical Power System****Programme Code : EE/ EP****Semester : Sixth****Course Title : MAINTENANCE OF ELECTRICAL EQUIPMENTS****Course Code : 316328****I. RATIONALE**

The electrical engineering technologist is required to carry out the maintenance of the electrical machines and equipment, which includes installation, testing and commissioning. S/he is thus expected to use the relevant skill sets while working in the industry, commercial establishments, and public utility departments such as PWD, irrigation, electricity supply agencies, water supply and sewage board etc. This course aims the students with the skills to inspect various types of installations and test electrical machines as per prevailing standard practices. S/he will also be able to carry out maintenance activities of different types of electrical equipment. S/he will follow the relevant safety practices during such activities.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences: Maintain different types of electrical equipment following safe practices.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 - Follow safety norms to prevent accidents while using electrical equipment.
- CO2 - Test electrical equipment.
- CO3 - Maintain rotating electrical machines.
- CO4 - Maintain single phase and three phase transformers.
- CO5 - Maintain insulation systems of electrical equipment.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

Course Code	Course Title	Abbr	Course Category/s	Learning Scheme			Credits	Paper Duration	Assessment Scheme								Total Marks					
				Actual Contact Hrs./Week					Theory			Based on LL & TL		Based on SL								
				CL	TL	LL			Practical		FA-TH		SA-TH		Total		FA-PR					
									Max	Max	Max	Min	Max	Min	Max	Min	Max	Min				
316328	MAINTENANCE OF ELECTRICAL EQUIPMENTS	MEE	DSC	4	-	4	2	10	5	3	30	70	100	40	25	10	25#	10	25	10	175	

Total IKS Hrs for Sem. : 0 Hrs

Abbreviations: CL- ClassRoom Learning , TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\\$ Internal Online Examination

Note :

1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
5. 1 credit is equivalent to 30 Notional hrs.
6. * Self learning hours shall not be reflected in the Time Table.
7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies
-------	--	---	-------------------------------

MAINTENANCE OF ELECTRICAL EQUIPMENTS

Course Code : 316328

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	<p>TLO 1.1 Explain the hazards, safety actions for the given situation.</p> <p>TLO 1.2 Explain the importance of accident prevention.</p> <p>TLO 1.3 Describe the responsibilities and the monitoring actions of the supervisor in the given hazardous or accident situation.</p> <p>TLO 1.4 Describe the operating procedural steps of the given types of fire extinguishers.</p> <p>TLO 1.5 State the principle characteristics and related precautions for safety of equipment earthed by the specified clause.</p> <p>TLO 1.6 State the reasons behind failure of the given electrical equipment.</p> <p>TLO 1.7 State the role of Bureau of Indian Standards in testing, importance of ISI mark in testing and maintenance of electrical equipment.</p>	<p>Unit - I Safety and prevention of accidents</p> <p>1.1 Hazards, accidents, safety</p> <p>1.2 Dos and Don'ts for electrical supervisors.</p> <p>1.3 Electric shock: factors influencing severity of shock, rescuing a person from electric shock, different CPR Technique to employed under accidental condition.</p> <p>1.4 Artificial respiration: types & procedures.</p> <p>1.5 Precautions against electric fire.</p> <p>1.6 Types of fire extinguishers, "PASS" & "RACE" in case of fire.</p> <p>1.7 Objectives of earthing. Earthing of electrical equipment as per IS 3043-1987</p> <p>1.8 Protection of electrical equipment against electric shock (class 0 to class III).</p> <p>1.9 Causes of failure of electrical Equipment: internal and external</p> <p>1.10 Role of BIS in testing of electrical Equipment.</p>	<p>Lecture Using Chalk-Board Model</p> <p>Demonstration Video</p> <p>Demonstrations</p> <p>Case Study</p> <p>Collaborative learning</p> <p>Hands-on</p> <p>Site/Industry Visit</p>

MAINTENANCE OF ELECTRICAL EQUIPMENTS**Course Code : 316328**

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
2	<p>TLO 2.1 Explain the objectives of the testing.</p> <p>TLO 2.2 Describe the procedure of the given testing methods.</p> <p>TLO 2.3 Explain the importance of the given categories of tests.</p> <p>TLO 2.4 Explain the importance of tolerance.</p> <p>TLO 2.5 Explain meaning and importance of ingress protection.</p> <p>TLO 2.6 Explain significance of maintenance of electrical equipment.</p> <p>TLO 2.7 State the given type(s) of maintenance technique.</p> <p>TLO 2.8 Explain the given factor(s) affecting preventive maintenance.</p> <p>TLO 2.9 Describe the procedures for developing preventive maintenance schedule.</p> <p>TLO 2.10 Explain the steps in preparing foundation for the given type of rotating machine.</p> <p>TLO 2.11 Suggest tools for maintenance of the given rotating machine.</p>	<p>Unit - II Testing and Maintenance</p> <p>2.1 Objectives of testing.</p> <p>2.2 Methods of testing : direct, indirect and regenerative.</p> <p>2.3 Categories of Tests: routine, type, special and supplementary tests.</p> <p>2.4 Tolerance.</p> <p>2.5 Ingress protection, IP marking.</p> <p>2.6 Significance of maintenance of electrical equipment.</p> <p>2.7 Types of maintenance-routine, preventive, breakdown maintenance.</p> <p>2.8 Factors affecting the preventive maintenance schedule.</p> <p>2.9 Procedure for developing preventive maintenance schedule.</p> <p>2.10 Foundations: requirements and factors affecting rotating machine foundation.</p> <p>2.11 Tools/instruments: bearing puller, filler gauge, dial indicator, spirit level, megger, earth tester, growler, test lamps, multimeter, spanner sets, and screwdrivers.</p>	Lecture Using Chalk-Board Presentations Video Demonstrations Model Demonstration Flipped Classroom Collaborative learning Case Study

MAINTENANCE OF ELECTRICAL EQUIPMENTS

Course Code : 316328

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
3	<p>TLO 3.1 Describe the procedural steps to be followed as per IS code of practice for maintenance of the given machine.</p> <p>TLO 3.2 Describe the procedural steps to be followed as per IS code of practice for testing of the given induction motor.</p> <p>TLO 3.3 Describe the procedural steps to be followed as per IS code of practice for testing of the given three - phase alternator and synchronous motor.</p> <p>TLO 3.4 Prepare the trouble shooting chart for the given type of induction motor.</p>	<p>Unit - III Procedure for developing preventive maintenance schedule of Rotating Machines</p> <p>3.1 Recommended maintenance schedules: Single phase and three phase induction motors (IS 900 – 1992), three phase alternators and synchronous motors.</p> <p>3.2 Induction motor testing: Routine, type and special test of single phase induction motor as per IS 7572 – 1974 and three phase induction motor as per IS4029 -2010.</p> <p>3.3 Alternator and synchronous motor testing: Routine, type and special test of three phase alternator and synchronous motor as per IS 7132-1973.</p> <p>3.4 Trouble shooting chart for single phase and three phase induction motor (IS 900 – 1992).</p>	Lecture Using Chalk-Board Presentations Video Demonstrations Flipped Classroom Collaborative learning Case Study Site/Industry Visit
4	<p>TLO 4.1 Describe the procedural steps to be followed as per IS code of practice for maintenance of the given transformer.</p> <p>TLO 4.2 Explain the specified test with its purpose and identify the terminals of a given type of transformer.</p> <p>TLO 4.3 Describe the procedural steps to be followed for finding voltage ratio of given transformer by various methods.</p> <p>TLO 4.4 Describe the Polarity test, Phasing out test, Back to Back test of given transformer.</p> <p>TLO 4.5 Prepare the trouble shooting chart for single phase and three phase transformers.</p> <p>TLO 4.6 Suggest the foundation requirement with sketch for the given type of transformer.</p>	<p>Unit - IV Testing and trouble shooting of transformers</p> <p>4.1 Recommended maintenance schedules: transformers (IS 10028, part III – 1981)</p> <p>4.2 Routine, type, supplementary, special tests of transformers, nomenclature of transformer terminals as per IS 2026-1981.</p> <p>4.3 Measurement of voltage ratio by ratio meter, standard transformer, turn testing method.</p> <p>4.4 Polarity test.</p> <p>4.5 Phasing out test.</p> <p>4.6 Back to Back test.</p> <p>4.7 Trouble-shooting chart for single phase and three phase transformers.</p> <p>4.8 Foundations: requirements for static machine foundations, factors governing them as per IS 10028 part 2.</p>	Lecture Using Chalk-Board Presentations Video Demonstrations Flipped Classroom Collaborative learning Site/Industry Visit Case Study

MAINTENANCE OF ELECTRICAL EQUIPMENTS

Course Code : 316328

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
5	<p>TLO 5.1 Classify the insulation material for electrical equipment as per IS code of practice.</p> <p>TLO 5.2 State the factors affecting the life of insulating material.</p> <p>TLO 5.3 Describe the procedural steps to be adopted for measurement of insulation resistance by different methods.</p> <p>TLO 5.4 State the different properties and contaminating agents of transformer oil.</p> <p>TLO 5.5 Describe the procedural steps to be followed as per IS code of practice for testing of transformer oil.</p> <p>TLO 5.6 Describe the various methods of purification, cleaning of transformer oil and drying and re-varnishing of transformer windings.</p> <p>TLO 5.7 Prepare the sample history sheet for the specified electrical machine.</p>	<p>Unit - V Testing and reconditioning of electrical machine insulation</p> <p>5.1 Classification of insulating materials as per IS 8504- 1994.</p> <p>5.2 Factors affecting life of insulating materials.</p> <p>5.3 Measurement of insulation resistance by megger, voltmeter, dielectric absorption, polarisation index.</p> <p>5.4 Transformer oil: properties, contaminating agents.</p> <p>5.5 Testing of transformer oil as per IS 1866 : Dielectric strength test, acidity test, sludge test, crackle test, flashpoint and fire point test.</p> <p>5.6 Reconditioning of insulation: centrifugal purifiers, streamline filter (Vacuum type) for purification and filtering of insulating oil. Cleaning and drying, re-varnishing, construction and working of vacuum Impregnation plant.</p> <p>5.7 History sheets of transformers and induction motors: [Part A: machine specifications with component specifications (installation information, bearings, oil type, core weight etc. as applicable); Part B: date wise: observations of parameters such as voltage, current, temperature etc., symptoms, works carried out under maintenance).</p>	Lecture Using Chalk-Board Presentations Video Demonstrations Flipped Classroom Collaborative learning Case Study

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Use fire extinguishers to extinguish the fire.	1	* Demonstration of Fire extinguisher available in the institute.	2	CO1
LLO 2.1 Apply artificial respiration in case of emergency.	2	* Demonstration of artificial respiration (Any convenient method).	2	CO1
LLO 3.1 Measure earth resistance.	3	* Measurement of earth resistance of electrical laboratory equipment.	2	CO1
LLO 4.1 Identify protective class of a given electric equipment.	4	*Protective class of a given electric equipment.	2	CO1
LLO 5.1 Get acquainted with the procedure for getting ISI mark.	5	* Visit BIS portal (bis.gov.in) for getting ISI mark/obtaining a license for electrical equipments and prepare a report for it.	4	CO1

MAINTENANCE OF ELECTRICAL EQUIPMENTS

Course Code : 316328

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 6.1 Use tools/accessories applicable in the process. LLO 6.2 Identify the parts of a given motor.	6	* Dismantle and reassemble the given electrical machine and identify the various parts.	2	CO2
LLO 7.1 Use testing instrument for testing electrical equipment.	7	* Use of instruments for testing/maintenance of given electrical equipment.	2	CO2
LLO 8.1 Test given LED for ingress of water to confirm the IP rating.	8	* Testing of given 70 W or higher rating LED for ingress of water to confirm the IP rating	2	CO2
LLO 9.1 Carryout maintenance activities suggested in IS: 900-1992(Annex G) at 5,6,7 and 8 for maintenance of induction motors.	9	Maintainance of given induction motor.	2	CO3
LLO 10.1 Carryout maintenance activities suggested in IS: 10028- part 3 at 1,2,3 and 4for maintenance of transformer.	10	Maintainance of given transformer.	2	CO4
LLO 11.1 Identify the parts of single-phase induction motor. LLO 11.2 Rectify the basic faults in given single phase induction motor	11	Diagnosis and rectification of faults for a ceiling fan running slow.	1	CO3
LLO 12.1 Identify the parts of single-phase induction motor. LLO 12.2 Rectify the basic faults in given single phase induction motor.	12	Diagnosis and rectification of faults for a ceiling fan running in reverse direction.	2	CO3
LLO 13.1 Test the insulation condition of single-phase induction motor (before and after no load running)	13	Measurement of winding resistance of a single-phase induction motor by V-I method.	2	CO3
LLO 14.1 Test the three phase induction motor before commissioning.	14	* Reduced voltage running up test of three phase induction motor	2	CO3
LLO 15.1 Test the insulation condition of three phase induction motor (before and after no load running).	15	Measurement of phase winding resistance of a three-phase induction motor by V-I method.	2	CO3
LLO 16.1 Test the insulation condition of three phase induction motor (before and after conducting brake test).	16	Measurement of phase winding resistance of a three-phase induction motor by V-I method.	2	CO3
LLO 17.1 Identify primary and relevant secondary windings of transformer.	17	* Phasing out test of the three-phase transformer.	2	CO4
LLO 18.1 Identify the polarity of transformer windings.	18	* Polarity test of three phase transformer.	2	CO4
LLO 19.1 Apply regenerative method of testing.	19	Back-to-Back test on two identical single-phase transformers.	2	CO4
LLO 20.1 Test the dielectric strength of transformer oil. LLO 20.2 Using transformer testing oil kit.	20	Dielectric strength test of transformer oil.	2	CO5
LLO 21.1 Insulation resistance and dielectric strength of the windings in a single-phase induction motor applying high-voltage, ensuring that the motor can withstand operational voltage without failure	21	Test insulation resistance and dielectric strength of the windings of a single-phase induction motor.	2	CO5

MAINTENANCE OF ELECTRICAL EQUIPMENTS**Course Code : 316328**

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 22.1 Insulation resistance and dielectric strength of the windings in a three-phase induction motor by applying high-voltage, ensuring that the motor can withstand operational voltage without failure	22	Test insulation resistance and dielectric strength of the windings of a three-phase induction motor.	2	CO5
LLO 23.1 Measure insulation resistance of single-phase induction motor.	23	Measurement of insulation resistance of single-phase induction motor.	2	CO5
LLO 24.1 Measure insulation resistance of three phase induction motor.	24	Measurement of insulation resistance of three phase induction motor.	2	CO5
LLO 25.1 Measure insulation resistance of single phase transformer.	25	Measurement of insulation resistance of single-phase transformer.	2	CO5
LLO 26.1 Measure insulation resistance of three phase transformer.	26	Measurement of insulation resistance of three phase transformer.	2	CO5

Note : Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)**SUGGESTED STUDENT ACTIVITIES**

- Prepare report for step-by-step procedure to be followed for artificial respiration to be given to shock affected person.
- Prepare power point presentation on testing of Induction motor as per IS.
- Prepare power point presentation related to foundation of transformers.
- Collect sample of various class of insulating materials and prepare a chart of it.
- Prepare report for step-by-step procedure to be followed for VFD maintenance.

Assignment

- Elaborate various cooling methods of alternator.
- Prepare excel sheet for carrying out preventive maintenance schedule on any machine in lab.
- Elaborate Cable insulation HV test and cable conductor resistance measurement test using LCR meter.
- Collect information and prepare report on MSEDC transformer maintenance.
- Elaborate various motor winding temperature measurement methods.
- Elaborate various transformer cooling methods.

Micro project

- Collect information on safety signs used for electrically hazardous areas and prepare charts for display in the laboratory or work place.
- Collect information on CPR Technique and prepare charts for display in the laboratory or work place.
- Visit electrical machine manufacturing unit and collect data of various tests conducted on it and submit a detailed report.
- Prepare a report on diagnosis of transformer oil sample by conducting various tests on it and submit a detailed report.

MAINTENANCE OF ELECTRICAL EQUIPMENTS**Course Code : 316328**

- Collect information of specifications, uses, cost of various tools and equipment needed for carry out maintenance of different electrical machines submit a detailed report.

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Fire extinguisher (powder type)	1
2	400V/230V, 50 Hz, 3-phase transformer with all phase winding terminals brought out for connections (suitable output in range of 2 kVA to 4 kVA).	10
3	Ceiling fan	11,12
4	AC-DC Ammeter range (0-2.5-5-10A) .	15,16,14
5	AC-DC Voltmeter Range (0-75/150/300V, 0 - 300V /600 V)	15,16,14
6	Single phase auto transformer 0-270 V, 15 A, input single phase, 230 V.	17,18,19
7	Three phase auto transformer 0-450 V, 15 A, input 3 phase, 400 V.	17,18,19
8	At least two identical 230 V/115 V or 400 V/ 230 V 50 Hz, 1 or 2 kVA single phase transformers.	18
9	Dielectric oil testing kit (with input at 230 V).	20
10	HV test kits for motors up-to 400 V.	21,22
11	Earth Resistance tester	3
12	230 V, 50 Hz, single phase capacitor start cage type induction motor (suitable available HP)	6,9
13	3-phase 5 HP, 400 V, 50 Hz, 1500 RPM squirrel cage induction motor with brake load arrangement as required.	6,9
14	Bearing puller, filler gauge, dial indicator, spirit level, megger, earth tester, growler, test lamps, multimeter, spanner sets, and screwdrivers.	7
15	LED lamp (70 W or higher rating)	8
16	3-phase 400V, 50 Hz, 1500 RPM slip ring induction motor about 5 HP.	9
17	Tachometers 0-5000 RPM minimum.	9,11,12,21,22
18	A.C. Watt meters: 0-300/600 V, 5/10 A or 10/20 A as needed.	9,11,12,21,22
19	LPF Wattmeter, 0-300/600 V, 1A to 2A.	9,11,12,21,22

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

MAINTENANCE OF ELECTRICAL EQUIPMENTS**Course Code : 316328**

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	I	Safety and prevention of accidents	CO1	8	2	4	4	10
2	II	Testing and Maintenance	CO2	18	4	6	10	20
3	III	Procedure for developing preventive maintenance schedule of Rotating Machines	CO3	8	2	4	4	10
4	IV	Testing and trouble shooting of transformers	CO4	18	4	4	12	20
5	V	Testing and reconditioning of electrical machine insulation	CO5	8	2	2	6	10
Grand Total				60	14	20	36	70

X. ASSESSMENT METHODOLOGIES/TOOLS**Formative assessment (Assessment for Learning)**

- For formative assessment of laboratory learning 25 marks.
- Each practical will be assessed considering appropriate % weightage to process and product and other instructions of assessment.
- Two unit tests of 30 marks will be conducted and an average of two unit tests considered.

Summative Assessment (Assessment of Learning)

- End semester summative assessment of 25 marks for laboratory learning.
- End semester assessment of 70 marks through offline mode of examination.

XI. SUGGESTED COS - POS MATRIX FORM

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes* (PSOs)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO1	3	3	2	3	3	-	3			
CO2	3	3	2	3	2	2	3			
CO3	3	3	2	3	2	2	3			
CO4	3	3	2	3	2	2	3			
CO5	3	3	2	3	2	2	3			

Legends :- High:03, Medium:02, Low:01, No Mapping:-

*PSOs are to be formulated at institute level

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number

MAINTENANCE OF ELECTRICAL EQUIPMENTS**Course Code : 316328**

Sr.No	Author	Title	Publisher with ISBN Number
1	Bhattacharya S. K.	Electrical Machines	McGraw Hill Education. New Delhi, ISBN : 9789332902855
2	Theraja B.L.	Electrical Technology Vol-II (AC and DC machines)	S.Chand and Co.Ltd., New Delhi ISBN : 9788121924375
3	Bandyopadhyay M. N.	Electrical Machines Theory and Practice	PHI Learning Pvt. Ltd., New Delhi, ISBN : 9788120329973 VI
4	Jean-Claude Trigeassous	Electrical Machine Diagnosis	John Wiley & Sons, Inc ISBN: 978-1-84821-263-3.

XIII . LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://www.youtube.com/watch?v=w4jHpHoYZhk	How to Use a Fire Extinguisher
2	https://www.youtube.com/watch?v=wrawEAAjrrY	Artificial respiration methods
3	https://www.youtube.com/watch?v=CvuDFgFFOa8	Fundamentals of Transformer Commissioning and Maintenance Testing
4	https://www.youtube.com/watch?v=ntOc4h792UE	Motor Maintenance & Troubleshooting
5	https://www.youtube.com/watch?v=uMxK6djp_rI	Electric Motor Repair & Rebuild Instructions
6	https://youtu.be/JvsPnGbUH5M	power transformer oil filtration and treatment
7	https://nptel.ac.in/	Relevant information from NPTEL
8	https://www.electricaltechnology.org/	Relevant information
9	https://www.electrical4u.com/	Relevant information

Note :

- Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

INDUSTRIAL DRIVES AND CONTROL**Course Code : 316330**

Programme Name/s : Electrical Engineering/ Electrical Power System
Programme Code : EE/ EP
Semester : Sixth
Course Title : INDUSTRIAL DRIVES AND CONTROL
Course Code : 316330

I. RATIONALE

Industries are moving towards automation. The conventional speed control methods of motors are replaced by solid state drives which result in accurate, fast, precise speed, torque and power control to match the requirement of different type of loads. This course will enable the diploma students to develop cognitive, psychomotor and affective domain skill sets to control the speed and torque of a given motor and maintain the control circuits used in the field.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to help the student to attain the following industry-identified competency through various teaching-learning experiences ;

- Control precisely the speed, torque and power of different motors to ensure optimal performance of industrial drive system.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 - Apply the basics of electric drive for precise motor control operation.
- CO2 - Use appropriate braking method for different AC and DC motors.
- CO3 - Control precisely the speed of a given DC motor using appropriate phase-controlled converter and chopper.
- CO4 - Control precisely the speed of a given Induction Motor using appropriate AC Drive technique.
- CO5 - Control precisely the speed of a given motor using advanced techniques.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

Course Code	Course Title	Abbr	Course Category/s	Learning Scheme			Credits	Paper Duration	Assessment Scheme										Total Marks				
				Actual Contact Hrs./Week					Theory		Based on LL & TL				Based on SL								
				CL TL LL					SLH NLH		FA-TH		SA-TH		Total		FA-PR		SA-PR				
				CL	TL	LL			SLH	NLH	Max	Max	Max	Min	Max	Min	Max	Min					
316330	INDUSTRIAL DRIVES AND CONTROL	IDC	DSE	3	-	2	1	6	3	3	30	70	100	40	25	10	25#	10	25	10	175		

INDUSTRIAL DRIVES AND CONTROL**Course Code : 316330****Total IKS Hrs for Sem. : 0 Hrs**

Abbreviations: CL- ClassRoom Learning , TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\\$ Internal Online Examination

Note :

1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
5. 1 credit is equivalent to 30 Notional hrs.
6. * Self learning hours shall not be reflected in the Time Table.
7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	<p>TLO 1.1 Describe the fundamental building blocks along with its function of typical electric drive.</p> <p>TLO 1.2 Classify Electric drives.</p> <p>TLO 1.3 Write the fundamental torque equation of motor load system specifying each parameter.</p> <p>TLO 1.4 Describe briefly four quadrant operation in an electric drive with neat labeled sketches.</p> <p>TLO 1.5 Classify the different components of load torque.</p> <p>TLO 1.6 Identify stable and unstable region of operation in speed-torque characteristics of a three-phase induction motor.</p>	<p>Unit - I Basics of Electric Drives</p> <p>1.1 Electric Drive – Definition, block diagram and basic building blocks of an electric drive system.</p> <p>1.2 Classification of Drives – AC, DC, Permanent Magnet Synchronous Motor (PMSM), Special motor drives.</p> <p>1.3 Fundamental torque Equation</p> <p>1.4 Multi-quadrant operation</p> <p>1.5 Components of Load torque</p> <p>1.6 Nature and classification of Load torque</p> <p>1.7 Steady State Stability (No derivation)</p>	<p>Demonstration Lecture Using Chalk-Board Model</p> <p>Demonstration Video</p> <p>Demonstrations Flipped Classroom Presentations</p>

INDUSTRIAL DRIVES AND CONTROL

Course Code : 316330

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
2	<p>TLO 2.1 Define braking.</p> <p>TLO 2.2 State different types of braking along with its advantages.</p> <p>TLO 2.3 Describe different braking methods used for DC series motor and DC shunt motor along with diagrams.</p> <p>TLO 2.4 Describe different braking methods used for three phase induction motors.</p> <p>TLO 2.5 Describe eddy current braking along with its applications.</p>	<p>Unit - II Braking of Electric Motors</p> <p>2.1 Braking – Definition, types and advantages.</p> <p>2.2 Braking of DC Series and DC Shunt Motor - Dynamic braking/Rheostatic braking , Regenerative braking and Plugging.</p> <p>2.3 Braking of induction motor (Three Phase)- Rheostatic braking, Regenerative braking and Plugging.</p> <p>2.4 Eddy current braking- Principle and application</p>	Video Demonstrations Demonstration Flipped Classroom Lecture Using Chalk-Board Site/Industry Visit Presentations Model Demonstration
3	<p>TLO 3.1 Describe a given type of single phase controlled converter fed separately excited DC motor drive with diagrams.</p> <p>TLO 3.2 Describe a given type of three phase controlled converter fed separately excited DC motor drive with diagrams.</p> <p>TLO 3.3 Describe basic chopper circuit.</p> <p>TLO 3.4 Classify choppers based on output voltage and quadrant operations.</p> <p>TLO 3.5 Describe the working of a given type of chopper based on quadrant operations.</p> <p>TLO 3.6 Describe the function of chopper controlled drives in solar and battery powered electric vehicles along with block diagrams.</p>	<p>Unit - III DC Drives</p> <p>3.1 Single phase controlled converter fed separately excited DC motor drive 3.1.1 Single phase half wave converter drive. 3.1.2 Single phase semi converter drive. 3.1.3 Single phase full converter drive. 3.1.4 Single phase dual converter drive.</p> <p>3.2 Three phase controlled converter fed separately excited DC motor drive 3.2.1 Three phase half wave converter drive. 3.2.2 Three phase semi converter drive. 3.2.3 Three phase full converter drive. 3.2.4 Three phase dual converter drive.</p> <p>3.3 Basic chopper circuit using SCR.</p> <p>3.4 Classification of chopper based on output voltage and quadrant operation.</p> <p>3.5 Classification of chopper based on quadrant operation. 3.5.1 Class A Chopper Drive. 3.5.2 Class B Chopper Drive. 3.5.3 Class C Chopper Drive. 3.5.4 Class D Chopper Drive. 3.5.5 Class E Chopper Drive.</p> <p>3.6 Application of chopper control drive in solar and battery powered electric vehicle (Block diagrams only)</p>	Model Demonstration Video Demonstrations Demonstration Flipped Classroom Lecture Using Chalk-Board Site/Industry Visit

INDUSTRIAL DRIVES AND CONTROL

Course Code : 316330

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
4	<p>TLO 4.1 Explain the working of stator voltage control by using AC voltage controller.</p> <p>TLO 4.2 Describe the fundamental principle and working of Variable Frequency Drive (VFD).</p> <p>TLO 4.3 Describe variable frequency control of 3-phase induction motor using VSI.</p> <p>TLO 4.4 Describe sinusoidal PWM technique in AC drives.</p> <p>TLO 4.5 Describe variable frequency control of 3-phase induction motor using CSI.</p> <p>TLO 4.6 Describe given type of slip power recovery control of Three phase induction motor.</p> <p>TLO 4.7 Describe rotor resistance control for 3-phase slip ring induction motor.</p> <p>TLO 4.8 Explain the advantage of using soft starters for starting and speed control of induction motor.</p>	<p>Unit - IV AC Drives</p> <p>4.1 Stator voltage control using AC voltage controller.</p> <p>4.2 Variable Frequency Control (VFD).</p> <p>4.3 Voltage Source Inverter Control.</p> <p>4.4 AC drives using sinusoidal PWM technique.</p> <p>4.5 Current Source Inverter Control.</p> <p>4.6 Basics of Slip power recovery - static Kramer drive and static Scherbius drive.</p> <p>4.7 Rotor Resistance Control.</p> <p>4.8 Soft starters - Need, significance and working.</p>	<p>Demonstration Video</p> <p>Demonstrations Model</p> <p>Demonstration Flipped Classroom</p> <p>Site/Industry Visit</p> <p>Lecture Using Chalk-Board</p>
5	<p>TLO 5.1 State different types of servo motor along with its advantages.</p> <p>TLO 5.2 Describe with sketches the working of servo motor drives for given applications.</p> <p>TLO 5.3 Describe with sketches the working of BLDC motor drives.</p> <p>TLO 5.4 Describe the working of PLL in DC drive</p> <p>TLO 5.5 Describe the working of microcontroller controlled AC/DC drive.</p> <p>TLO 5.6 Describe the method to control step angle and speed of stepper motor using microcontroller.</p> <p>TLO 5.7 Describe the speed control of AC/DC motor drive using PLC.</p>	<p>Unit - V Advanced Techniques for Motor Control</p> <p>5.1 Servo motor drive – introduction, working principle, types, advantages, disadvantages.</p> <p>5.2 Applications of servo motor drive with block diagram:- Robotics, CNC machine.</p> <p>5.3 BLDC motor drive - Introduction, Basic building block diagram, Application.</p> <p>5.4 Phase Locked Loop (PLL) control for DC Motor.</p> <p>5.5 AC/DC drive using microcontroller control.</p> <p>5.6 Microcontroller based stepper motor control.</p> <p>5.7 PLC controlled AC/DC motor drives.</p>	<p>Demonstration Lecture Using Chalk-Board</p> <p>Presentations Video</p> <p>Demonstrations Model</p> <p>Site/Industry Visit</p> <p>Demonstration</p>

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

INDUSTRIAL DRIVES AND CONTROL

Course Code : 316330

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Identify and explain the function of various parts of a DC drive system.	1	*Identification of various parts of DC drive.	2	CO1
LLO 2.1 Identify and explain the function of various parts of an AC drive system.	2	Identification of various parts of AC drive.	2	CO1
LLO 3.1 Control speed of DC shunt motor using single phase half wave-controlled converter. LLO 3.2 Plot torque speed characteristics of the DC shunt motor. LLO 3.3 Plot torque- current characteristics of the DC shunt motor.	3	*Speed control of DC shunt motor using single phase half wave-controlled converter.	2	CO3
LLO 4.1 Control speed of DC shunt motor using single phase full wave converter LLO 4.2 Plot torque speed characteristics of the DC shunt motor. LLO 4.3 Plot torque- current characteristics of the DC shunt motor.	4	*Speed control of DC shunt motor using single phase full wave converter.	2	CO3
LLO 5.1 Control speed of DC shunt motor using single phase semi converter. LLO 5.2 Plot torque speed characteristics of the DC shunt motor. LLO 5.3 Plot torque- current characteristics of the DC shunt motor.	5	Speed control of DC shunt motor using single phase semi converter.	2	CO3
LLO 6.1 Control the speed of DC shunt motor by armature voltage control method using step down chopper. LLO 6.2 Plot torque- current characteristics of the DC shunt motor. LLO 6.3 Plot torque- Speed characteristics of the DC shunt motor.	6	Speed control of DC Shunt motor by armature voltage control method using step down chopper.	2	CO3
LLO 7.1 Control speed of DC series motor by armature voltage control method using step down chopper. LLO 7.2 Plot torque speed characteristics of DC series motor. LLO 7.3 Plot torque current characteristics of DC series motor.	7	Speed control of DC series motor by armature voltage control method using step down chopper.	2	CO3
LLO 8.1 Control the speed of three phase squirrel cage induction motor by varying stator voltage using thyristor circuit. LLO 8.2 Plot torque speed characteristics of three phase squirrel cage induction motor.	8	Speed control of three phase squirrel cage induction motor using stator voltage control (Thyristor circuit)	2	CO4

INDUSTRIAL DRIVES AND CONTROL**Course Code : 316330**

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 9.1 Speed control of three phase squirrel cage induction motor using Variable frequency Drive (VFD). LLO 9.2 Plot torque speed characteristics of three phase squirrel cage induction motor	9	*Speed control of three phase squirrel cage induction motor using VFD.	2	CO4
LLO 10.1 Control the speed of three phase slip ring induction motor using rotor resistance control method. LLO 10.2 Plot torque speed characteristics of three phase Slip ring induction motor.	10	*Speed control of three phase slip ring induction motor using rotor resistance control method.	2	CO4
LLO 11.1 Test the performance of v/f control based induction motor drive	11	*Soft start and control the speed of single/three phase induction motor by varying supply frequency using VSI and maintaining constant v/f ratio.	2	CO4
LLO 12.1 Identify parts of BLDC motor drive. LLO 12.2 Connect the parts of BLDC motor drive.	12	Connection of different parts of BLDC drive after identifying its different parts.	2	CO5
LLO 13.1 Control the speed of DC shunt motor using microcontroller. LLO 13.2 Plot torque speed characteristics of DC shunt motor LLO 13.3 Plot torque current characteristics of DC shunt motor	13	Speed control of DC shunt motor using microcontroller drive.	2	CO5
LLO 14.1 Control the speed of DC motor using Programmable Logic Controller(PLC).	14	*Speed control of DC motor using PLC.	2	CO5
LLO 15.1 Perform Plugging operation on given induction motor	15	* Perform Plugging operation on given induction motor	2	CO2

Note : Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)**Micro project**

- Identify drive system in an amusement park and submit report on it.
- Build Step down chopper to control the speed of a small rating DC series motor.
- Build single phase full wave converters for speed control of a small rating DC shunt motor
- Design drive mechanism of a battery-operated bicycle of rating 24V/36V/48V, 250W/500W/1000W using Brushless DC motor.
- Build Step down chopper to control the speed of 3 phase squirrel cage IM using Rotor Resistance control.
- Prepare a case study on energy efficient electric drive which uses DOL/ Star delta/ Auto transformer/soft starters

INDUSTRIAL DRIVES AND CONTROL**Course Code : 316330**

- Build a project to control the speed of existing motor in your lab using a Variable Frequency Drive.
- Design drive mechanism for stepper motor.
- Design a control system for a solar tracker that adjusts the position of solar panels to maximize energy harvesting throughout the day.
- Implement a system for controlling the position of a servo motor using a microcontroller.

Assignment

- Analyze factors affecting the efficiency of electric drive systems and propose methods to enhance performance, considering aspects like energy losses and thermal management.
- Examine the challenges and solutions associated with integrating electric drive systems with renewable energy sources such as wind turbines or solar panels
- Investigate the integration of chopper-controlled drives in solar and battery-powered electric vehicles and make report on it.
- Explain the basic principles of electric drives, including the relationship between torque, speed, and position in electric motors.
- Compare single-phase and three-phase converter configurations (half-wave, semi, full, and dual converters) in DC motor control.
- Explain how chopper-controlled drives facilitate regenerative braking in electric vehicles.

Visit

- Visit nearby market to carry out a Survey and submit a report on available choppers, inverters, dual converters for various drives used in our day-to-day life.
- Visit any one sugar/ paper/Steel/ textile mill or other to know the types of drives used in each stage of operation and submit a report on it.
- Visit nearby Industry having advanced technique for controlling speed of DC/AC motor. Prepare report of visit with special comments of AC/DC motor and semiconductor switches used.

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Microcontroller based trainer kit, Microcontroller based Embedded system, DC motor/three phase IM, LDR sensor, LED Series Interface	11,12
2	Open-Source software (MATLAB, SCILAB)	11,12
3	Brushless DC motor	12
4	PLC trainer kit	14

INDUSTRIAL DRIVES AND CONTROL**Course Code : 316330**

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
5	DC shunt motor (0.25HP to 1HP),	3,4,5,6,11
6	Dual channel CRO 25 MHZ with Isolation Transformer or power scope, attenuator probe for CRO	3,4,5,6,7,8
7	Experimental Thyristor trainer Kits Choppers, Inverters, Dual Converters, Induction heating, Dielectric heating and connecting cords.	3,4,5,6,7,8,1,2
8	Digital Multimeter 3 1/2-digit, 0-800 volts, 0-10 A, micro ammeter: 0-100 micro ampere	3,4,5,6,8,13,11,12
9	DC Series motor (0.25HP to 1HP),	7,1
10	Resistive load Lamp-100W, Heater Coil-500W	7,8
11	Three phase AC supply 440 V, 10A, 50 Hz	8,9,10,14,11
12	Three Phase Induction Motor (Squirrel Cage and Slip ring Induction Motor) (0.25HP to 1HP)	8,9,12,15
13	Variable frequency Drive (VFD) - 440V ,10A, PWM control Technique.	9
14	Single phase AC supply 230V, 10 A	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	I	Basics of Electric Drives	CO1	7	2	4	6	12
2	II	Braking of Electric Motors	CO2	6	2	4	4	10
3	III	DC Drives	CO3	13	4	6	10	20
4	IV	AC Drives	CO4	12	4	6	6	16
5	V	Advanced Techniques for Motor Control	CO5	7	2	4	6	12
Grand Total				45	14	24	32	70

X. ASSESSMENT METHODOLOGIES/TOOLS**Formative assessment (Assessment for Learning)**

- For formative assessment of theory, two offline unit tests of 30 marks are to be conducted and average of both unit test marks will be considered for out of 30 marks. For formative assessment of laboratory learning, 25 marks are to be considered. Each practical will be assessed considering 60% weightage to process and 40% weightage to product.

Summative Assessment (Assessment of Learning)

- For summative assessment of theory, End semester assessment of 70 marks. For summative assessment of laboratory learning, 25 marks are considered.

XI. SUGGESTED COS - POS MATRIX FORM

INDUSTRIAL DRIVES AND CONTROL

Course Code : 316330

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes* (PSOs)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO1	3	2	1	-	-	-	3			
CO2	3	2	1	1	-	-	3			
CO3	3	3	2	3	1	3	3			
CO4	3	3	2	3	-	2	3			
CO5	3	3	2	3	1	3	3			

Legends :- High:03, Medium:02, Low:01, No Mapping: -

*PSOs are to be formulated at institute level

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	G. K. Dubey	Fundamentals of Electrical Drives	Narosa Publishing House, ISBN: 978-81-7319-428-3
2	D. P. Kothari and Rakesh Singh Lodhi	Electric Drives	WILEY India Edition ISBN:978-9384588120
3	Srinivas Vemula and Ramaiah Veerlapati	Control of DC and AC Drives	Lap lambert academic publishing ISBN: 9783330053434
4	M.H. Rashid	Power Electronics devices circuits and applications	Pearson/Prentice Hall, 2004 ISBN:9780131011403
5	B. N. Sarkar	Fundamentals of Industrial Drive	PHI Learning Pvt. Ltd. ISBN:9788120344334
6	P.C SEN	Thyristor DC Drives	Wiley–Blackwell ISBN: 978-0471060703
7	P.S.Bimbhra	Power Electronics	Khanna Publishers ISBN:978-8174092793

XIII . LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://nptel.ac.in/courses/108108077	Electric Drives
2	https://archive.nptel.ac.in/courses/108/104/108104140/	Fundamentals of Electric drives
3	http://www.ndl.gov.in/he_document/nptel/nptel/courses_108_104_108104140_video_lec16	Fundamentals of Electric drives
4	https://www.youtube.com/watch?v=pjwXSoOGXiE	Three phase fully controlled converter fed seperately excited DC motor
5	https://www.youtube.com/watch?v=VnAg5kfjFdo	Idea of VVVF Speed Control of Induction Motor
6	https://www.youtube.com/watch?v=dWQLNIbX8aM	Two quadrant chopper and Four Quadrant chopper for motor control

INDUSTRIAL DRIVES AND CONTROL**Course Code : 316330**

Sr.No	Link / Portal	Description
7	https://en.wikibooks.org/wiki/Power_Electronics	Solid state devices and soft starters.
8	https://www.youtube.com/watch?v=ww5uXJ38fqQ	Introduction to Speed Control

Note :

- Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 04/09/2025**Semester - 6, K Scheme**